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S ynthetic track generation using Markov chains 
 consists of two steps: genesis and track propaga- 
 tion, described as follows.

Genesis. The probability of genesis is constructed as 
a three-dimensional field of latitude, longitude, and 
time. This construction begins by using a fine-reso-
lution grid at 0.5° × 0.5° × 5 days and counting the 
number of events in the post-1970 hurricane database 
(HURDAT) within each cell. These estimates are 
then smoothed using a three-dimensional Gaussian 
kernel (Ravela and Manmatha 2001) with isotropic 
but varying scale in latitude and longitude and a 
fixed time of 5 days, with an extent of 15 days. The 
spatial scale of the Gaussian kernel is estimated by 
expanding the neighborhood around any point until 
N events are included (Wand and Jones 1994) or a 15° 
limit in latitude–longitude is reached. The genesis 
probability density function (PDF) is sampled to 
generate an event e0 = e0(x0, y0, tg), where x0 and y0 are 
the longitude and latitude of genesis, and tg is a time 
window within which genesis occurs. Land points 
are not accorded any genesis probability. Formally, 
we write

 pg(xi, yi, ti) = Hg(xi, yi, ti)ƒG(.,Σi),

where Hg is the normalized histogram over space–
time, G is the normalized three-dimensional space–
time Gaussian kernal, and the operator is convolu-
tion. Variable-resolution smoothing is better than 
smoothing at a fixed resolution because the latter can 
underestimate and overestimate genesis frequency. 
This is in turn better than no smoothing at all, which 
leads to sampling discontinuities as an artifact of 
discretization. Figure S1 depicts examples of genesis 
PDFs, comparing variable resolution smoothing to 
fixed smoothing and to no smoothing.

Propagating tracks. Once initiated, a track is stepped 
forward in 6-h intervals as a Markov chain. There 
are several ways to integrate a track. The most obvi-
ous choice is to construct a PDF p(xi+1, yi+1Ωxi, yi) at 
a chosen time window tg, but this method suffers 
from two problems. First, tracks become very sensi-
tive to resolution. Second, there is no easy way to 
interpolate between grid nodes because this method 
does not really capture the continuity in the intrinsic 
track manifold. The most striking feature of tracks 
is that they appear to be smooth. There is a strong 
relationship between a track’s current and prior speed 
and direction, and there is continuity across space 
between these variables. We therefore begin model-
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manner in which we do this is described in Fig. S2. In 
this figure, at a given location on the grid (xi, yi), our 
parameterization computes a conditional distribution 

of instantaneous rates of change of 
track speed and angle given prior 
speeds and angles. A sample drawn 
from this distribution is integrated 
forward to obtain a new location 
for the track. We do this because 
writing the transition probabilities 
in terms of their rates of change (see 
Fig. S2) produces conditional PDFs 
in a nearly resolution-independent 
manner, explained as follows. In 
Fig. S3, the conditional density 
of current speed and angle given 
their one-step priors is depicted. To 
sample the present speed and direc-
tion from a given prior requires 
sampling from the corresponding 
column of the left matrix shown in 
Fig. S3. To generate speeds that have 
smoothness similar to those of the 
observed tracks, a very high dis-
cretization of the conditional PDF 
becomes necessary, which is not 
advisable for the amount of space it 
requires and because there is simply 
insufficient data to populate the 
transition matrix. By modeling the 
conditional PDF as rates of change 
of speed and direction given prior 
speeds and directions, respectively, 
we are able to produce fairly coarse-
resolution representations.

Also, observe that modeling in 
terms of prior rates of change of 
speed and direction (as opposed to 
speed and direction themselves) is 
not advisable because it does not 

capture the regulation inherent in tracks; a 
track can quickly “runaway” (diverge) when 

FIG. S1. The genesis PDFs for the Atlantic basin 
illustrate the utility of space-varying isotropic 
smoothing: (a) color-coded raw (warm colors are 
bigger) annual HURDAT genesis PDF, (b) PDF 
with fixed window smoothing, and (c) variable 
window smoothing. The unsmoothed PDF is 
fragmented, the fixed-window PDF still contains 
sampling artifacts, but the variable-window PDF 
is less sensitive to sampling artifacts. These PDFs 
were constructed using post-1970 tracks.

ing by using an intrinsic parameterization of track 
manifolds. Using differential properties to describe 
the intrinsic geometry of manifolds is natural, and the 
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using prior rates of change of speed and direction. 
Thus, the simulation process consists of the follow-
ing overall steps:

1) Compute

  
Here, ei = ei(xi,yi,tg), s and θ are the 6-h displace-
ment magnitude and direction, respectively, and 
the overdots represent time rates of change. Note 
that all values drawn from the conditional distri-
bution pt carry the same genesis time.

2) Sample from this distribution. We use a hit-or-
miss method for a fixed interval of time and if 
no samples are available, the cumulative density 
function (CDF) method is used (Gentle 2004). We 
do this because in cases where the distributions 
are “broad,” hit-or-miss is substantially faster 
than CDF.

3) Propagate the track. The new position is comput-
ed by straightforward integration from currently 
estimated angle and speed rates:

Here, a is the radius of Earth, and δt 
is 6 h. The joint distribution in step 1 
can be high-dimensional and sparse 
when populated using HURDAT. We 
enforce conditional independence to 
simplify the representation. This 
splits the joint probability to

 

The conditional PDFs are gener-
ated using multiresolution kernel-
smoothed nonparametric density 
estimates produced from raw his-
tograms (Wand and Jones 1994). 
Rates of change of speed and di-
rection in the raw histograms are 
discretized to 8 km/6 h/6 h and 
3°/6 h, respectively, and prior speed 
is discretized at 40 km/6 h (22 bins), 
and prior direction to 20° (18 bins). 

A multiresolution representation of the PDFs of rates 
of change of speed and direction in space and time 
is used to sample the state variables according to a 
“schedule,” described as follows. We do this heuristi-
cally, because one of the primary problems with a 
fixed space–time resolution of transition probabili-
ties of state variables is that scarcity of HURDAT 
data can easily lead to dead tracks where no data 
are available. To avoid this, we pursue an approach 
that tries to gather the best possible evidence for 
propagating a track before letting it die. The manner 

FIG. S2. The genesis event e0 = e0(x0,y0,tg) 
initiates a track that is propagated for-
ward using a one-step Markov chain, 
conditioned by locations traversed in the 
(x,y) field within time window tg.

FIG. S3. There is a nearly linear relationship between current and 
previous states, speed (left), and direction (right). This makes a rate-
based representation advantageous because it makes the transition 
PDFs insensitive to resolution.
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in which this is done is by constructing a sampling 
schedule, described in the Table S1.

Transition probability density functions at any giv-
en space–time resolution are smoothed outputs of the 
corresponding histograms in space and state variables. 
As with the genesis PDFs, three-dimensional normal-
ized Gaussians are used in x, y, and z, where z is the rate 
of change of either speed or direction. The extent in x 
and y is variable so as to encompass a constant number 
of total points. The scale (σz) in z is fixed to the state 
resolution that is employed and truncated to a 3σz ex-
tent. In more elaborate applications of this technique, 
the Gaussian width σz is determined by application of 
some optimization principles, but here we choose it 
subjectively to produce reasonable looking probability 
density functions. Tracks are continued until they die 
because of a lack of data after following the sampling 
schedule (which is very rare), or if the track reaches 
(see Fig. S4) an area with weakly observed hurricane 
activity in HURDAT. The intensity model provides a 
more principled regulation of track length, discussed 
in appendix C of Emanuel et al. (2006).

GENERATION OF SYNTHETIC TIME 
SERIES OF 250- AND 850-HPA FLOW. We 
begin by representing the zonal wind component at 
250 hPa by its monthly mean plus a Fourier series 
with random phase, whose amplitude is the square 
root of the observed variance

  (S1)

where u–250(x,y,τ) is the monthly mean zonal flow at 
250 hPa interpolated to the date and position of the 
storm, u'2250(x,y,τ) is its variance from the monthly 
mean, and F1 is defined as

 
(S2)

where T is a time scale corresponding to the period 
of the lowest frequency wave in the 
series, N is the total number of waves 
retained, and X1n is, for each n, a 
random number between 0 and 1. In 
(S1), τ is a slow time variable corre-
sponding to the linearly interpolated 
variation of the monthly mean flow 
with time, while t is a fast time scale. 
The time series thus has the observed 
monthly mean and variance, while 
the coefficients in (S2) are chosen 
so that the power spectrum of the 
kinetic energy of the zonal f low 
falls off as the inverse cube of the 
frequency, mimicking the observed 
spectrum of geostrophic turbulence. 
We do not attempt to model the ef-
fect on the storm of higher-frequency 
environmental fluctuations as might, 
for example, be encountered in the 
mesoscale frequency domain, charac-
terized by an ω–5/3 power spectrum.

TABLE 1. Sampling schedule.

SpaceÆtime
0.5° × 0.5° 

discretization
5° × 5° 

discretization
Three manually constructed 

latitude belts
Global

Nine time periods Priority: 1 2 3 7

One time period 
(annual) 4 5 6 8

FIG. S4. The termination boundary is constructed from the marginal 
distribution of hurricane activity.
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In practice, we take T = 15 days and use N = 15. Figure S5 shows an example of such a time series, with 
u–250 = 30 m s–1 and 
  

The time series of the other flow components, v250(x,y,τ,t), u850(x,y,τ,t), and v850(x,y,τ,t) are modeled ac-
cording to

  (S3)

where Aij are coefficients whose determination is discussed presently, and the Fs have the same form as those 
in (S2), but with different random phases. Thus, the different Fs are uncorrelated. We can write (S1) and 
(S3) in matrix form
 V = V- + AF, (S4)

where V is a vector containing the velocity components, V- is the climatological mean flow, F is the vector 
of uncorrelated time series of random phase [and amplitude of unity, as in (S2)], and A is a lower triangular 
matrix of coefficients that satisfies

 ATA = COV, (S5)

where COV is the symmetric matrix containing the variances and covariances of the flow components. In 
constructing the covariance matrix, we ignore any correlation between the zonal flow at 250 hPa and the 
meridional flow at 850 hPa, and between the meridional flow at 250 hPa and the zonal flow at 850 hPa. 

Because COV is symmetric and positive definite, the 
matrix A can easily be found from COV by Cholesky 
decomposition.
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FIG. S5. Example of random time series generated us-
ing (S1) and (S2), here for the zonal wind at 250 hPa.
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