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ABSTRACT: Global models comprising the sixth-generation Coupled Climate Model Intercomparison Project (CMIP6)

are downscaled using a very high-resolution but simplified coupled atmosphere–ocean tropical cyclonemodel, as ameans of

estimating the response of global tropical cyclone activity to increasing greenhouse gases. As with a previous downscaling of

CMIP5models, the results show an increase in both the frequency and severity of tropical cyclones, robust across themodels

downscaled, in response to increasing greenhouse gases. The increase is strongly weighted to theNorthernHemisphere, and

especially noteworthy is a large increase in the higher latitudes of the North Atlantic. Changes are insignificant in the South

Pacific across metrics. Although the largest increases in track density are far from land, substantial increases in global

landfalling power dissipation are indicated. The incidence of rapid intensification increases rapidly with warming, as pre-

dicted by existing theory. Measures of robustness across downscaled climate models are presented, and comparisons to

tropical cyclones explicitly simulated in climate models are discussed.
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1. Introduction
The cost to society of climate change is driven largely by the

costs associated with extreme climate events such as droughts,

floods, wildfires, and storms. Slow changes in long-term average

conditions, such as annual mean temperature and sea level, can

often be accommodated through an equivalently slow adaptation,

but adaptation to changes in infrequent events is notoriously

flawed andoften unduly influenced by politics and special interests

(Gaul 2019), making each event disproportionately expensive.

The long-term average annual cost C of discrete climate

events can be defined as the integral of the cost of each event

multiplied by the annual probability density of that event, over

the whole range of possible costs:
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where c is the cost of an event of intensity i, and p(i) is the

probability density (probability per unit intensity) associated

with that cost.

For extreme events such as tropical cyclones, the cost typi-

cally rises steeply and nonlinearly with the intensity of the

event, and at the same time the probability of the event drops

with its intensity. For this reason, the integral in (1) is usually

dominated by costs associated with intensities greater, and

possibly much greater, than the intensity associated with the

peak of the probability distribution.

This simple point is illustrated in Fig. 1, which is based on

damage caused to a portfolio of U.S. properties by 6200

synthetic tropical cyclones making landfall on the U.S. East

and Gulf Coasts in two different climate states. These tracks

were generated using the technique described in Emanuel et al.

(2008) applied to a particular CMIP6-generation climate model,

and the damage function and portfolio of property values

used by Emanuel et al. (2012). The details of the down-

scaling methodology are described later in this paper but are

not so important here; the point is to illustrate the nature of

the problem.

The green curves in Fig. 1 show the annual probability

densities of losses as a function of the loss amount; here these

are defined as probabilities per unit base 10 log of the cost. The

solid curves are for the climate of the late twentieth century,

while the dashed curves pertain to the climate of the late

twenty-first century under global warming. The most likely

event will incur between $100,000 and $1,000,000 in losses to

this portfolio. The warmer climate has fewer weak events and

more strong events; for this illustration the overall frequency is

held constant.1 The violet curves show the probability density

multiplied by the cost. The areas under these violet curves are

proportional to the total cost. Thus the long-term cost of this

hazard is coming from the low-probability, high-intensity tail

of the distribution, and the climate shift is causing an appre-

ciable increase in cost even though the shift in the probability

distribution is small.

Conversely, almost no damage is contributed by the median

(most frequent) event. Thus the most frequent question asked

by politicians and the media, and many scientists, which is

‘‘How will the intensity and frequency of tropical cyclones

change?’’, is essentially meaningless, because frequency is

Denotes content that is immediately available upon publica-

tion as open access.
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1 The overall frequency includes some events that cause no

damage, so the areas under the probability curves in Fig. 1 are

not equal.
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dominated by events that cause very little damage. What we

must concern ourselves with is the frequency of the most

damaging events. While this illustration pertains only to wind

damage, the same is qualitatively the case for water damage.

The climate shift in probability density and damage is not

simply a matter of changing frequency and/or intensity but also

depends crucially on shifting storm tracks; at the end of the day,

all meaningful climate change is local. The damage done by a

tropical cyclone is also a strong function of its size, including

inner dimensions usually characterized by the radius of maxi-

mum winds, and the outer wind field. High category tropical

cyclones may have radii of maximum winds as small as 10 km

and as large as 100 km while their destructiveness varies be-

tween the first and second power of this length scale.2

Moreover, much of the damage done by tropical cyclones is

accomplished by water—specifically, by storm surge, which is

sensitive to wind speed, storm size, and translation speed, and

by torrential rains, which are sensitive to a variety of storm

structural characteristics, intensity, and movement.

For all these reasons, tropical cyclones simulated by most of

today’s generation of coupled climate models are unsuitable

for direct estimation of tropical cyclone damage. Indeed, the

majority of coupled models reviewed by Knutson et al. (2020)

have grid spacings of 50 km or greater, whereas numerical

convergence experiments (e.g., Rotunno et al. 2009) suggest

that grid spacing on the order of a few kilometers is needed to

achieve numerical convergence of azimuthal mean variables.

An alternative to using poorly resolved tropical cyclones

from climate models is to downscale such models by embed-

ding within them regional or local models with far greater

spatial resolution. A straightforward approach is to drive such

embedded high-resolution models with time-evolving bound-

ary conditions supplied from the global models. Examples of

this approach are comprehensively reviewed in Knutson et al.

(2020). A disadvantage of this approach is that the total

number of events simulated is limited by the length of time

spanned by the global model simulation and/or by computa-

tional cost. Furthermore, in designing the geometries of the

high-resolution subdomains, one must take into account the

possibility that the regions affected by tropical cyclones might

shift with climate change.

For this reason, we adapt the approach described in Emanuel

et al. (2008) in which the essential statistical properties of the

time-evolving environment are culled from global reanalyses or

climate models and used to drive a simple coupled ocean–

atmosphere tropical cyclone intensity model along tracks pro-

duced by random seeding and a beta-and-advection displacement

model. The intensity model has very high spatial resolution in the

storm core, owing to the use of an angular momentum radial

coordinate, and had been previously shown to produce skillful

real-time intensity forecasts (Emanuel andRappaport 2000). The

random seeding is a ‘‘natural selection’’ algorithm; the vast ma-

jority of seed disturbances dissipate quickly owing to having been

placed in unfavorable environments, leaving a few survivors that

had been placed in favorable environments.

There are several advantages to this technique in compari-

son to conventional downscaling. The use of angular momen-

tum coordinates allows increasing spatial resolution of the

storm core as its intensity increases, and thus each storm’s in-

tensity is limited by the physical properties of its environment

rather than by numerical resolution. Because the tropical cy-

clone model is driven by the statistics of the global model or

reanalysis, an arbitrarily large number of events can be simu-

lated in a given climate, and the seeding is global so there is no

need to preselect subdomains.

Yet there are a number of disadvantages to this approach.

The intensity model is axisymmetric, so the dynamical inter-

action with sheared environments must be parameterized. The

shear parameterization used was developed by Emanuel et al.

(2004) to optimize the quality of real-time intensity forecasts

and is a function of the 250–850-hPa shear magnitude (but not

direction) and the saturation deficit of the large-scale envi-

ronment at 600 hPa. There is no feedback from the simulated

cyclones to the regional environment, as there is in conven-

tional downscaling, so the simulation of the extratropical

transition of simulated storms is compromised. (The simulated

cyclones do respond to the statistics of middle latitude baro-

clinic systems, but they cannot feedback on such systems.)

Finally, in previous work and in what follows here, there has

been no attempt to alter the statistics of the random seed dis-

turbances in response to climate change, except that we allow

the horizontal scale of the seed disturbances to vary with the

FIG. 1. Annual probability density (green) and damage multi-

plied by probability density (violet) based on 6200 U.S. landfalling

synthetic tropical cyclones downscaled from the MIROC 6 global

coupled climate model for each of two periods: 1984–2014 from

historical simulations (solid) and 2070–2100 from the Shared

Socioeconomic Pathway (SSP) 5 (dashed). The probability density

is per unit base 10 log of the damage. The damage is to a portfolio of

insured property in the easternUnited States and is proportional to

the area under the violet curves.

2 A stationary, steady cyclone just offshore will affect an area

proportional to the square of its diameter, while a steady storm

moving at constant translation speed will affect a swath propor-

tional to the first power of the diameter, but the duration of winds

at fixed points will also depend on storm diameter.
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deformation radius based on the large-scale environment.

Thus we operate under the assumption that the climatology of

tropical cyclones is entirely dictated by the large-scale ther-

modynamic and kinematic environment and not by the cli-

matology of potential initiating disturbances.

Since most tropical cyclones are triggered by pre-existing

disturbances, the notion that cyclone climatology is indepen-

dent of the climatology of such disturbances is counterintuitive.

Yet there is an abundance of evidence that spatial, seasonal,

and interannual variability of tropical cyclones is controlled

mostly by variations in the large-scale environment. In the first

place, genesis potential indices (Gray 1979; DeMaria et al.

2001; Emanuel and Nolan 2004; Emanuel 2010), which are

based exclusively on large-scale variables such as potential

intensity and wind shear, capture much of the climatology of

observed tropical cyclones, including their spatial and seasonal

distributions, and interannual variability, at least in the

Atlantic region (e.g., Camargo et al. 2007a,b; Bruyère et al.

2012; Camargo et al. 2014). Classical regional downscaling

simulations (e.g., Vitart et al. 2007) for the Atlantic region

also capture much of the observed interannual variability of

tropical cyclone activity when driven by initial and boundary

conditions supplied from reanalysis data, but in this case,

potential initiating disturbances such as African easterly

waves (AEWs) are usually present in the reanalyses and

thereby exert an influence on the downscaled tropical cy-

clones. Yet in one such study (Patricola et al. 2018), AEWs

entering the regional domain from the east were artificially

suppressed, but the frequency and interannual variability in

tropical cyclogenesis was hardly affected. In this case, the

AEWs determined the timing and location of genesis events,

but not their existence.

The random seeding approach applied here has been shown

to capture reasonably well the spatial and seasonal variations

of tropical cyclones around the world, and the interannual

variability in the Atlantic region, at least as well as classical

regional downscaling does (Emanuel et al. 2008). But be-

cause the global warming signal is probably not yet detect-

able in historical tropical cyclone counts (Knutson et al.

2019), there is no way to definitively test this technique’s (or

any other’s) ability to capture the possibly unique character

of the global climate change signal. We will return to this

point in section 4.

2. Methods and data
We use the same downscaling technique original devel-

oped by Emanuel et al. (2006) and Emanuel et al. (2008) and

applied to the CMIP5 generation of models by Emanuel

(2013). We have made some minor modifications to the

technique since its application to CMIP5 models. These in-

clude the following:

d Scaling the radii of maximum winds of the seed disturbances

by the deformation radius, based on dry stratification along

moist adiabats as determined by the environmental temper-

ature at 600 hPa. This causes a modest increase in the

average size of simulated tropical cyclones with warming of

the free troposphere.

d Slightly modifying the coefficients governing beta drift.
d Calculating the monthly mean ocean mixed layer depths and

submixed layer thermal stratification from the global model

output rather than from historical climatology; the effect of

this is to modestly reduce the number of very intense storms

(Emanuel 2015).
d Adding detection of secondary eyewalls that occur in the

Coupled Hurricane Intensity Prediction Scheme (CHIPS)

model and modifying the canonical radial profiles of wind

speed to account for them. This does not affect the global

statistics presented here but does affect the calculation of wind

speeds at fixed points and thereby, for example, the damage

calculations such as those mentioned in the introduction.
d Applying a database of surface roughness over land used to

calculate the neutral drag coefficients, replacing the crude

parameterization based on topography used before. The new

drag coefficients over land are applied to both the CHIPS

model and the post-processing algorithms that calculate

rainfall. This change does not affect storms over water unless

they have previously passed over land.

For the current study, we applied the technique to nine global

climate models and to two climate regimes: the period 1850–

2014 from historical simulations, and an arbitrary 151-yr period

from simulations in which atmospheric CO2 increases by

1% yr21. In each case, 150 synthetic tracks were generated for

each year, yielding 24 750 events for the historical period, and

22 650 events for the increasing CO2 simulations. The random

seeding rate is calibrated for each model to yield an 1850–2014

average annual global frequency of 84 storms, close to the post-

1980 observed mean. The global climate models used are listed

in Table 1.

3. Results
We begin by presenting selected time series of global trop-

ical cyclone activity from the historical period, 1850–2014 and

from the 1% yr21 CO2 experiment. The latter is carried out

over an arbitrary 151-yr period, but for purposes of comparison

we display the results as extending from 1970 to 2120. But note

that themeasured rate of increase of atmosphere CO2 has been

closer to 0.2% yr21. Our intent here is to examine the general

response of global tropical cyclone activity to rising green-

house gas concentrations, uncomplicated by other climate in-

fluences, not to make actual projections. Since the radiative

forcing by atmospheric CO2 over this range of values is nearly

proportional to the logarithm of the concentration, we expect

trends in global tropical cyclone activity to scale nearly with the

annual percentage increase in CO2 concentration in the ab-

sence of other climate forcings.

In the figures that follow, the solid curves show the multi-

model means and the shadings show one standard deviation up

and down from the mean. Dashed lines indicate the linear re-

gression trends of the multimodel means. Blue represents the

historical period and red shows the 1% yr21 CO2 increase

experiment.

Figure 2 shows the annual frequency of all tropical cyclones

over the globe. The global frequency increases by about 9%

over the historical period, 1850–2014, but more rapidly in the
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last few decades.3 Over the 151 years of the increasing CO2

experiment, the frequency increases by about 25% per dou-

bling of CO2. Linear trends and associated p values are given

for the annual frequency and other tropical cyclone metrics in

Table 2.

The previous downscaling of CMIP5 models yielded an in-

crease of roughly 20% per doubling of CO2, although those

results are not directly comparable to these because the tra-

jectory of CO2 concentration in the representative concentra-

tion pathway (RCP) 8.5 is not the same at that used here.

The green curves in Fig. 2 show the values of a genesis po-

tential index (GPI) summed over the globe (weighted by the

cosine of the latitude) for each climate model and then aver-

aged to produce the multimodel mean. The GPI is that of

Emanuel (2010) except that the absolute vorticity contribution

is capped at 5 3 1025 s21, following Tippett et al. (2011). This

GPI was developed largely independently of the tropical cy-

clone downscaling algorithm, so this provides a somewhat in-

dependent check, although both the CHIPSmodel and theGPI

use potential intensity and a nondimensional measure of

midtropospheric specific humidity x as variables.

Figure 3a shows the multimodel mean global frequency of

tropical cyclones categorized by Saffir–Simpson intensity and

compares them to observations (IBTrACS; Knapp et al. 2010)4

made over the period 1980–2018. Note here that the tropical

storm (TS) category only includes synthetic and observed events

whose lifetime intensity exceeds 40 kt (1 kt ’ 0.51m s21).

The comparison of the observed frequencies with the events

downscaled from the historical period is reasonable, but there

are too few category 4 storms and too many category 5 storms.

This may reflect a bias in the downscaling methodology or in

the climate models, but it is also likely that the observations,

which are overwhelmingly based on satellite remote sensing

imagery, underestimate the intensity of the most intense

TABLE 1. List of CMIP6 models used in the downscaling of tropical cyclones, including resolution of atmospheric data and principal

references.

Institution Model Atmospheric resolutiona Reference

Canadian Centre for Climate Modeling

and Analysis

CanESM5 2.88 3 2.88 Swart et al. (2019)

Centre National de Recherches

Météorologiques
CNRM-CM6–1 1.48 3 1.48 Voldoire et al. (2019)

National Center for Atmospheric

Research

CESM2 1.258 3 0.938 Danabasoglu et al. (2020)

EC-Earth consortium EC-Earth3 0.78 3 0.78
United Kingdom Met Office Hadley

Centre

HadGEM3-GC31-LL 1.258 3 1.888 Sellar et al. (2020)

Institut Pierre Simon Laplace IPSL-CM6A-LR 1.258 3 2.58 Hourdin et al. (2016)

Center for Climate System Research;

University of Tokyo; Japan Agency for

Marine-Earth Science and Technology;

National Institute for Environmental

Studies

MIROC6 1.48 3 1.48 Tatebe et al. (2019)

Max Planck Institute MPI-ESM1–2-HR 0.948 3 0.948 Müller et al. (2018)
United Kingdom Met Office UKESM1–0-LL 1.258 3 1.8758 Sellar et al. (2020)

a This is the resolution of the output used to drive the downscaling; it may not correspond exactly with the native resolution of the GCM.

FIG. 2. Annual global frequency of downscaled tropical cyclones.

Solid curves represent multimodel means and shading indicates

one standard deviation up and down. Dashed lines show linear

regression trends. Blue indicates the historical period 1850–2014

while red shows the 1% yr21 CO2 increase experiment arbitrarily

beginning in 1970. Green curves show the multimodel mean,

globally summed genesis potential index (GPI).

3 This more rapid increase amounts to around 10 events over the

period of good global observations, 1980–2018. Given the Poisson

random variability of about 9 storms over this period, such a trend

would not be statistically detectable at the 5% level, even without

considering the effects of natural climate variability on global

tropical cyclone frequency.
4 Data for the North Atlantic and eastern and central North

Pacific originated from theNationalOceanographic andAtmospheric

Administration’s National Hurricane Center, and elsewhere from the

U.S. Navy’s Joint Typhoon Warning Center.
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events, shifting them artificially from category 5 to category 4

(Kossin et al. 2013). Figure 3b shows the same comparison but

increasing the intensities of the observed storms by 10%. This

increase brings the observed and historically simulated Saffir–

Simpson categories into much better alignment, though the

partitioning between tropical storms and category 1 storms

deteriorates, perhaps because of the ambiguity of the Dvorak

method when eyes are beginning to form (Olander and Velden

2019). The observed and historically simulated combined

numbers of tropical storms and category 1 storms are in very

good agreement. Thus it is likely that either the actual storm

intensities are underestimated or the simulated storm intensi-

ties are overestimated. We note that the 10% adjustment does

not improve the agreement in the Atlantic region (not shown),

perhaps because storms are better observed there. CO2-

induced warming brings about increases in the frequency of all

categories, but the increases in category 2 and 3 events are

small. These are in a flatminimum in the frequency distribution

among categories, so that a shift to higher intensities at con-

stant overall frequency would lead to little change in the fre-

quencies of those categories.

Figure 4 is in the same format as Fig. 2, but shows the evo-

lution over time of the power dissipation index, which is the

sum over each track and over all tracks in a given year of the

cube of the maximum surface wind. The power dissipation

increases at a rate of about 30% per doubling of CO2. This is

lower than the CMIP5 result (Emanuel 2013) of closer to 40%.

Note also, from Table 2, the statistically significant increase of

about 15% through the period 1850–2014.

We also consider a landfall power dissipation index, which is

the cube of the wind speed at landfall summed over all land-

falling events in each year. Here landfall is determined using a
1/48 3 1/48 bathymetry/topography dataset, and we consider all

landfalls, even if a storm makes landfall more than once.

Figure 5 and Table 2 show that the multimodel mean landfall

power dissipation increases by about 9% over the historical

TABLE 2. Historical periodsmean and linear trends over the historical period and over the 1%yr21 CO2 increase experiment, expressed in

percent change per CO2 doubling; p values are less than 0.01 for all trends except category 2 frequencies, where they are both 0.02.

Quantity Historical mean Change over historical period 1% yr21 CO2 (change per doubling)

Overall frequency (yr21) 84 9% 18%

Hurricane frequency (yr21) 57 10% 17%

Category 1 frequency (yr21) 17 5% 8%

Category 2 frequency (yr21) 10 5% 4%

Category 3 frequency (yr21) 10 8% 7%

Category 4 frequency (yr21) 10 13% 26%

Category 5 frequency (yr21) 11 20% 44%

Major hurricanes (yr21) 32 14% 26%

Overall landfall frequency (yr21) 48 7% 17%

Power dissipation index (m3 s22) 3.9 3 1012 15% 29%

Landfalling power dissipation (m3 s23) 3.3 3 1010 9% 25%

Radius of maximum winds (km) 59 2% 11%

Outer radius (km) 630 3% 7%

FIG. 3. (a) Global number of tropical cyclones by Saffir–Simpson category of lifetime maximum intensity.

Tropical storms here include only events with maximum intensities of at least 40 kt. Black indicates observed

(IBTrACS) during the period 1980–2018, while downscaled events are shown in blue for the historical period and

red from the linear regressions of trends in the 1% yr21 simulations at the time of CO2 doubling. The downscaled

events are multimodel means. (b) As in (a), but observed intensities have been increased by 10%.
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period and the projected increase is about 25% per doubling

of CO2, a bit less than the open-ocean increase in power

dissipation.

The spatial patterns of three multimodel mean tropical cy-

clone metrics and their changes with increasing CO2 are shown

in Fig. 6. The top row shows genesis density—the number of

genesis events per 18 latitude square per year, while the middle

row shows the track density and the bottom row shows the

power dissipation density. In the case of track density, each

track is counted only once in any lat/lon box used to grid the

data, whereas the power dissipation is summed over all 2-h

points along each track in each box. The left side of Fig. 6 is

based on IBTrACS data from 1979 to 2015 while the center

column shows multimodel mean quantities from the historical

downscaling. The right-hand side of Fig. 6 shows the percent-

age change between the mean over this historical period and

the mean over the 1% yr21 increasing CO2 simulations. The

change is displayed only where at least 7 of the 9 models agree

with each other on the sign of the change.

The historical mean fields in Fig. 6 show some of the same

biases noted in the CMIP5 downscaling and also present in the

climatologies of storms explicitly simulated in many of these

models (e.g., Camargo 2013) and in CMIP6 models (Roberts

et al. 2020). There are too many storms in the Southern

Hemisphere, including the SouthAtlantic, and too few tropical

cyclones in the eastern North Pacific. Genesis is too active in

the central North Pacific, and there are too few storms in the

North Atlantic. Some of these biases are also present in trop-

ical cyclones downscaled from climate reanalyses (not shown),

so these are probably an artifact of the downscaling technique.

It is evident from the track density maps that the downscaled

tracks extend somewhat farther poleward than the IBTrACS

storm tracks, except in the North Atlantic. This is likely owing

to differing conventions onwhen to terminate tracks of tropical

cyclones undergoing extratropical transition. Most forecasting

agencies terminate tropical cyclone tracks when the storm is

deemed to have become mostly extratropical. Termination of

the downscaled tracks, on the other hand, is based only on the

intensity having fallen below a set threshold. Thus we expect

that downscaled extratropical transitioning storms will be

carried somewhat farther poleward than IBTrACS events.

Turning attention to the percentage changes between the

historical to the global warming simulations (right-hand col-

umn of Fig. 6), note that there is essentially no change in any

metric in the South Pacific, as was the case in downscaling the

CMIP5 models. There is little change in the genesis rate in the

south Indian Ocean, but the power dissipation increases and

the tracks extend somewhat farther poleward, suggesting that

the tropical cyclones in this part of the world become more in-

tense and are able to travel farther poleward before dissipating.

The most profound changes occur in the Northern Hemisphere.

The genesis maps show a northward expansion of the North

Atlantic genesis region and the central and western North

Pacific genesis belts. The eastern North Pacific and Arabian Sea

genesis regions both expand westward. Partially as a result of

these changes in genesis, there are large increases in track

density and power dissipation throughout much of the Northern

Hemisphere, especially in the central North Pacific and the

subtropical to high-latitude North Atlantic. The largest per-

centage increases are, fortunately, away from land. Especially

noteworthy is the large increase in track density in the high

latitudes of the North Atlantic, suggesting that the northward

expansion of the Atlantic genesis region and the increase in

storm intensity there lead to a greater incidence of extratropical

transition. This is consistent with recent projections of extra-

tropical transition that suggest increases in the western North

Pacific and North Atlantic (Liu et al. 2017; Michaelis and

Lackmann 2019).

The large increase in tropical cyclone activity in the Northern

Hemisphere relative to the Southern Hemisphere is consistent

with explicitly simulated storms in CMIP6 models (Roberts et al.

2020) and the pattern of changes in track density resembles both

observed changes over the period 1980–2018 and changes simu-

lated by a suite of high-resolution coupled models over the same

period (Murakami et al. 2020), with large increases in the North

FIG. 4. As in Fig. 2, but showing the power dissipation index. FIG. 5. As in Fig. 2, but showing the landfall power dissipa-

tion index.
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Atlantic and central North Pacific. But the same models, forced

by increasing CO2 alone, show decreasing track density in the

North Atlantic.

The poleward expansion of both the track and power dissi-

pation density in the Northern Hemisphere and south Indian

Ocean is consistent with recent observations of the poleward

migration of the latitudes at which tropical cyclones are ob-

served to reach peak intensity (Kossin et al. 2014) and with

projected poleward migration in the western North Pacific

(Kossin et al. 2016).

In forecasting individual tropical storms, the intensification

rate is an important consideration because rapidly intensifying

events near the time of landfall can catch forecasters and

emergency managers off guard. Theoretically, intensification

rates should scale as the square of the potential intensity, so

they are more sensitive to climate change than the intensity

itself (Emanuel 2017). Figure 7a shows the base 10 logarithm of

the probability densities of the multimodel mean and standard

deviation of intensification rates based on 2-hourly fixes of the

downscaled tropical cyclones. These probability densities are

independent of overall storm frequency. Figure 7b shows the

percentage difference between the historical period and the

1% yr21 simulations. There are large percentage increases in

intensification rates exceeding about 3 kt h21, and this per-

centage change increases with intensification rate. There is

also a smaller increase in extreme dissipation rates, likely

FIG. 6. (top) Genesis density, (middle) track density, and (bottom) power dissipation density (a)–(c) from IBTRACS data, 1979–2015,

(d)–(f) the multimodel mean over the historial period, and (g)–(i) the percentage change from the historical period to the mean of the 1%

yr21 simulation. The changes are only displayed where seven or more of the models agree on the sign of the change.

FIG. 7. (a) Base 10 logarithmof themultimodelmean probability density of intensification and dissipation rates of

downscaled tropical cyclones over the historical period (blue) and the 1% yr21 simulations (red). The shading

shows one standard deviation up and down from the mean among the models. (b) Percentage change between the

historical and 1% yr21 simulations. Shading shows one standard deviation up and down from the mean change

among the models.
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owing to the faster decay rates of initially more intense storms

over land and cold water, because the decay rates scale roughly

with the square of the surface wind speed.

The flooding potential, and to some extent the wind damage,

caused by tropical cyclones can be strongly affected by their

translation speed. Slower moving storms will affect a given

region for a longer period, producing more rain and perhaps

more wind damage. On the other hand, slow-moving storms

are not likely to travel as far inland, sparing regions away from

coastlines.

Figure 8 shows the multimodel average translation speed of

downscaled tropical cyclones for the historical period (Fig. 8a)

and the change in translation speed (Fig. 8b) for a transient

doubling of CO2. The latter is displayed only where at least 7 of

the 9 GCMs agree on the sign of the change in downscaled

translation speed. Remarkably, there is no significant change in

translation speed in the deep tropics, but there is a substantial

decrease in mean translation speed at the subtropical periph-

eries of the tropical belt, affecting the U.S. East and Gulf

Coasts, the central coast of China, the Korean Peninsula,

southern Japan, and Australia. This is perhaps a consequence

of the projected poleward expansion of the Hadley circulation.

This result can be compared and contrasted to recent global

modeling results that show reductions in the subtropics and

middle and high latitudes (Yamaguchi et al. 2020) and reductions

primarily in the middle latitudes (Zhang et al. 2020). Lee et al.

(2020) used a downscaling method similar to that employed here

to examine translations speeds of storms near land, finding a slight

reduction.

4. Discussion

a. Changes in weak tropical cyclones
As was the case with downscaling the previous (CMIP5)

generation of climate models, the results of downscaling nine

CMIP6 models show substantial increases in both the intensity

and frequency of tropical cyclones as greenhouse gas concen-

trations increase. The frequency increase is at odds with most

(though not all) results from explicit modeling of tropical cy-

clones. According to a recent and comprehensive review by

Knutson et al. (2020), ‘‘the vast majority of individual studies

(22 out of 27 studies) project a decrease in global TC frequency

with greenhouse warming’’ (p. E306). It is both of inherent and

practical interest to discover why these results differ the way

they do.

It should first be noted that the great majority of the studies

done to date focused on tropical cyclones explicitly simulated

in global atmospheric or coupled general circulation models

(GCMs), whose effective horizontal grid spacings vary from

14 km to as much as 200 km. Most of these models moderately

FIG. 8. (a) Multimodel mean translation speed (kt) for the historical period and (b) the

change after a doubling of CO2. The latter is displayed only where at least seven of the nine

downscaled models agree on the sign of the change.
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to severely underresolve tropical cyclones (see, e.g., Rotunno

et al. 2009) and the mesoscale processes observed to be involved

in their genesis (e.g., Montgomery and Smith 2012). Tropical

cyclones that develop in such models must be detected using an

algorithm (e.g., Walsh et al. 2007) and the counts of tropical cy-

clones are known to be sensitive to how that algorithm is for-

mulated and to model characteristics (Raavi and Walsh 2020).

In particular, climate change may alter the scale and other

characteristics of simulated tropical cyclones, pushing events

across arbitrary detection thresholds and thereby leading to

false trends in counts of weak events. For example, weak

tropical cyclone–like disturbances may become broader as the

climate warms, as they do in ‘‘TC-world’’ experiments (e.g.,

Khairoutdinov and Emanuel 2013), and while their circulation

may stay the same or even increase, their vorticity may de-

crease below the imposed vorticity thresholds that are a key

feature of most tropical cyclone detection algorithms. Indeed,

in their analysis of 850-hPa vorticity in two global models, Sugi

et al. (2020) show that as climate warms, the vorticity of dis-

turbances of tropical storm strength decreases proportionally

more than does their intensity (cf. their Figs. 2 and 3), sug-

gesting that the pre–tropical cyclone disturbances may be be-

coming broader.

To test the idea that this could bias trends in explicitly detected

cyclones in GCMs, we recalculated time series of downscaled

tropical cyclone metrics as before but this time imposing an ar-

tificial vorticity-like detection threshold. Specifically, we dis-

carded events whose ratio of maximum circular wind speed to

radius of maximum winds is less than 6 3 1024 s21.

Figure 9 compares the evolution of total tropical cyclone

frequency in this modified experiment to the control, for both

the historical and increasing CO2 simulations of one of the nine

models we use in this study. The substantial upward trend of

the control frequency in this latter simulation is greatly

muted in the modified experiment. In both the control and

the modified experiments, the horizontal scale of the seed

disturbances is determined by the local deformation radius,

which increases as the climate warms owing to the increase in

dry static stability along moist adiabats.

Thus it is possible that the frequency of disturbances de-

tected by a vorticity threshold may decrease relative to the

frequency determined by a wind speed threshold. Almost all

the GCM-based studies reviewed by Knutson et al. (2020)

imposed both vorticity and wind speed detection thresholds, so

further research would be necessary to confirm or reject the

hypothesis that warming-induced trends in tropical cyclone

counts may be negatively biased through the use of a fixed

vorticity threshold that does not depend on the climate state.

There are also indications that explicitly simulated tropical

cyclones and their sensitivity to climate change may not be

robust to changes in model physics or resolution. For example,

when the grid spacing of a coupled global climate model was

decreased from 50 to 25 km, the sensitivity of tropical cyclone

counts to global warming went from negative to neutral

(Vecchi et al. 2019).Moreover, in contrast to both observations

(Tippett et al. 2011) and the downscaling described here, the

relationship between explicit tropical cyclone counts in GCMs

and environmental conditions is weak and/or of the wrong

character (Camargo et al. 2020).

For these reasons, there is little basis for confidence in the

projection bymost climate models that overall tropical cyclone

frequency will decline. Indeed, 7 of the 11 authors of Knutson

et al. (2020) rated confidence in the projection of decreasing

tropical cyclone frequency as low-to-medium.

But how believable are the indications of increasing fre-

quency across the spectrum of intensity resulting from this

downscaling study (see Fig. 3)? On the one hand, there is ex-

cellent correspondence between the downscaled tropical cy-

clone frequency and the genesis potential index calculated

from the raw GCM output (Fig. 2). The GPI was developed

and tested largely independently of the development of the

downscaling technique, though the variables used in the GPI

were selected partly because they are variables that appear

naturally in the CHIPSmodel.5 Both the CHIPSmodel and the

GPI depend strongly on potential intensity, wind shear, and the

midtropospheric dryness parameter x that is based on moist

static energy. There is no a priori reason to think that variations

in these parameters owing to global climate change would affect

tropical cyclones differently from variations owing to spatial,

annual and interannual variability, yet both the downscaling and

the GPI capture such natural variations quite well. There are, of

course, other empirically determined genesis potential indices

(e.g., Tippett et al. 2011; Tang and Camargo 2014) and given that

these produce different estimates, agreement with the down-

scaled frequencies presented here would likely be less.

By examining each of the factors that make up the definition

of GPI, it is possible to draw some inferences about which

FIG. 9. Time series of annual tropical cyclone counts for the

standard downscaling of the UKMO model (blue) and with the

imposition of an artificial vorticity threshold (red). Dashed lines

show the linear regressions.

5 This GPI is also dimensionally correct, yielding genesis number

per unit area per unit time. Other genesis indices perform equally

well during the historical period but yield very different trends in

global warming scenarios (Lee et al. 2020).
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environmental factors lead to its increase. The definition of

GPI used here is from Emanuel (2010):

GPI[ jhj3x24/3MAX[(V
pot

2 35m s21), 0]2

3 (25m s21 1 V
shear

)
24

, (2)

where h is the absolute vorticity of the 850-hPa flow, capped by

5 3 1025 s21, Vpot is the potential intensity, Vshear is the mag-

nitude of the 850–250-hPa wind shear, and

x[
s
b
2 s

m

s
0
*2 s

b

, (3)

where sb, sm, and s0* are the moist entropies of the boundary

layer and middle troposphere, and the saturation moist en-

tropy of the sea surface, respectively. This is the quantity that is

summed over the globe and averaged among the nine models

to produce the green curves in Fig. 2. Were it not for that

summation, it would be possible to do a linear factor separation

of (2) by taking the logarithm of both sides:

log(GPI)5 3 log(jhj)2 4

3
log(x)

1 2 logfMAX[(V
pot

2 35m s21), 1]g
2 4 log(25m s21 1 V

shear
) . (4)

Unfortunately, the summation over the globe and the aver-

aging among the nine models does not allow this: The loga-

rithm of the summed, averaged value of GPI given by (2) is not

equal to the summed, averaged value of the logarithm of GPI.

Since the tuning of the coefficients in (2) was done by matching

summed GPI to observations, one cannot willy-nilly use (4)

instead of (3) as the working definition of the GPI without re-

tuning. Since that retuning is beyond the scope of this study, we

attempt to use (4) anyway, using the summed, averaged

quantities (GPI, h, etc.) before taking their logarithms.

Figure 10 shows, for the 1% per year increasing CO2 ex-

periment, the evolution with time of the terms in (4), where it is

understood that the quantities have first been summed and

then averaged among the four models. To avoid extratropical

influences, we zero each individual termwherever the potential

intensity is 35m s21 or less, and each curve is relative to the

initial value of the quantity in question.

The black curve shows the sum of the terms whereas the

green curve is the logarithm of the actual GPI; the mismatch

between these two curves reflects the problems alluded to

above. But for what it is worth, one sees that the potential in-

tensity and saturation deficit are the dominant terms and work

in opposing directions. The negative contribution of the satu-

ration deficit x is consistent with the results of Emanuel et al.

(2008) and Lee et al. (2020) and suggest that the main break on

increasing tropical cyclone frequency in a warming climate is

the increasing saturation deficit of themiddle troposphere. The

vorticity and shear contributions are smaller, but both terms

act to increase the GPI trend.

To the extent that the GPI reflects the physics of the

downscaled tropical cyclones, we would infer that increasing

potential intensity is the most important contributor to in-

creasing cyclone frequency, with small additional contributions

from decreasing shear and increasing vorticity (likely reflecting

the poleward migration of genesis regions). Increasing satu-

ration deficit works in the opposite direction, acting to decrease

storm frequency.

It should be noted, however, that changing the exponent of

x in (2) to22 changes the sign of the net response of theGPI to

increasing CO2 concentration while not strongly degrading the

fit to observed variability, so the good fit to the downscaled

frequencies is somewhat coincidental. Thus the agreement

between the downscaled frequencies and the GPI should not

be interpreted as strong evidence for the correctness of either.

Returning to the downscaled tropical cyclones, their rate of

genesis varies directly with the specified seeding rate, which is

held constant across the globe, seasonally, interannually, and

with global climate change. Arguments have been made that

this seeding rate should decline as the globe warms (Sugi et al.

2020). Yet the strong spatial, seasonal, and interannual varia-

tion of potential initiating disturbances in the current climate

does not seem to preclude the ability of either the GPI or the

downscaling from capturing major features of natural tropical

cyclone variability (Camargo et al. 2007a; Emanuel et al. 2008).

Moreover, Patricola et al. (2018) showed that suppressing

African easterly waves, a prominent catalyst for NorthAtlantic

hurricanes, did not change the level of tropical cyclone activity

in a regional tropical NorthAtlantic model, although the waves

did determine the location and timing of genesis events. Thus

the seed disturbances, in this case, did not control the level of

tropical cyclone activity.

A more serious deficiency of the downscaling method ap-

plied here is that there is no feedback whatsoever between the

downscaled tropical cyclones and the large-scale environment

that is driving them. Even regional downscaling models, such

as that used by Patricola et al. (2018), can simulate some re-

gional feedbacks of cyclone activity within the regional model

itself, although they cannot influence the global model in which

the regional model is embedded.

FIG. 10. The terms on the right side of (4); respectively vorticity,

x, potential intensity (PI), and shear. The black curve shows their

sum while the green curve shows the logarithm of the actual GPI.

Each quantity is relative to its initial value.
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There are two known feedback mechanisms by which cur-

rent tropical cyclone activity can potentially influence future

activity though modification of their large-scale environment.

The first acts primarily though the ocean: Tropical cyclones

cool the sea surface by mixing warmer surface waters with

cooler water below the mixed layer (Leipper 1967; Price 1981)

and subsequent reheating of the cold wakes leads to a net ex-

port of heat away from the affected region (Emanuel 2001;

Fedorov et al. 2010). This has the negative feedback of cooling

the ocean in tropical cyclone regions, reducing the genesis

potential there, but it may lead to increases in genesis in

marginal regions outside the main tropical cyclone belts.

A second negative feedback acts through the atmosphere: It is

the profound drying of the atmosphere that occurs with any form

of aggregation of convection (Bretherton and Khairoutdinov

2004;Wing et al. 2017). This will greatly increase the inhibition to

tropical cyclogenesis represented in the GPI by the x parameter

and known to strongly affect the genesis rates in the downscaling

technique applied here (Emanuel et al. 2008).

Both these mechanisms are, in principle, operating in fully

coupled GCMs. To the extent that the large-scale fields are

affected by these feedbacks in the GCMs used here, they will

also decrease the number of downscaled genesis events, but

owing to the severe underresolution of tropical cyclones in

most GCMs, these negative feedbacks may be strongly muted.

But there are now some global coupled models with reso-

lutions high enough to capture most of the full spectrum of

tropical cyclone numbers and intensities. One such model, the

Model for Prediction across Scales–Atmosphere (MPAS-A),

was employed by Michaelis and Lackmann (2019) to make

global projections of the response of tropical cyclone activity to

global warming using a 15-km grid over the whole of the

Northern Hemisphere. Notably, they used a cyclone detection

algorithm based on sea level pressure anomalies with no vor-

ticity threshold. They found increasing tropical cyclone fre-

quency in the Northern Hemisphere, especially in the Atlantic.

Another high-resolution global coupledmodel is theNOAA

Geophysical Fluid Dynamics Laboratory (GFDL) high atmo-

spheric resolution version of the Forecast-oriented LowOcean

Resolution version of theGFDLglobal climatemodel (HiFLOR;

Murakami et al. 2015). With an effective grid spacing of about

25 km, this model explicitly simulates high-intensity tropical cy-

clones (Vecchi et al. 2019). Climate sensitivity experiments with

HiFLOR show that increasing CO2 concentrations leads to a

statistically insignificant change in global tropical cyclone counts

but a substantial increase in high intensity events (Vecchi et al.

2019). We downscaled 200 events globally per year for 200 years

of HiFLOR simulations in two different climates: the climate of

the late twentieth century and a climate representing increased

CO2 concentrations. In the former, a single year representing

atmospheric greenhouse and aerosol conditions in the year 1990

was repeated over 300 years; we used the last 200 years in the

downscaling. The warming experiment starts at year 100 of the

control simulation and increases CO2 at the rate of 1% per year

until a doubling has been reached after 70 years; thereafter the

CO2 concentration remains fixed for another 230 years. We use

the last 200 years of this simulation. Details may be found in

Irvine et al. (2019).

Figure 11 shows changes in global counts of tropical cyclones

in each Saffir-Simpson category. Note that the HiFLORmodel

produces about 90 tropical storms per year globally, close to

the observed frequency, while the downscaled results have

been calibrated to an annual frequency of 84 events in the

twentieth century. The distribution across categories of the

response of the downscaled tropical cyclones to doubling CO2

is consistent with that resulting from downscaling of the

CMIP6 models (see Fig. 2) but substantially muted in com-

parison. At the same time, there are substantial increases in the

explicitly simulated high intensity (category 4–5) tropical cy-

clones in HiFLOR, while the number of weak events (tropical

storms and category 1 hurricanes) decreases.We speculate that

the increase in explicitly simulated intense storm activity in

HiFLOR may have led to the aforementioned negative feed-

backs, which muted the response of the downscaled storms.

In the author’s opinion, the limitations of CMIP6 model

simulations of tropical cyclones preclude any robust projection

of the response of weak tropical cyclone activity to global

warming, either from their explicitly simulated storms or from

events downscaled from their output.

b. Changes in high-intensity tropical cyclones
In contrast to the case ofmarginal storms, detection of cyclones

in GCMs becomes less of an issue for intense storms, particularly

in the case of high-resolution models that can simulate the full

intensity spectrum. Perhaps for this reason, there is much better

agreement on projected changes in intense (category 4–5) tropi-

cal cyclones, both among the explicitly simulated storms and

between them and the downscaled storms [see Fig. 2c herein and

compare to Fig. 2a of Knutson et al. (2020)].

5. Summary
The application of a downscaling technique to nine CMIP6-

generation climate models suggests potentially large increases

in various measures of tropical cyclone activity in response to

FIG. 11. Change in the annual global frequency of tropical cy-

clones of six Saffir–Simpson categories. The blue bars show

changes in explicitly simulated tropical cyclones in the HiFLOR

model, and the red bars show changes in events downscaled from

HiFLOR.
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anthropogenic climate change, particularly in the Northern

Hemisphere. These results are broadly consistent with those

from downscaling CMIP5 models (Emanuel 2013).

As reviewed by Knutson et al. (2020), there is a moderately

strong consensus on an increase in high intensity tropical cy-

clones and in tropical cyclone rainfall. There is little agreement

on how the frequency of weak storms might change, but with

the possible exception of rainfall, these are of little conse-

quence. The fact that most explicit modeling studies agree that

tropical cyclone frequency will decrease with climate warming

may be an artifact of low resolution and the use of non-climate-

dependent detection thresholds. Their agreement with each

other is only prima facie evidence of robustness of the trend. In

the author’s opinion, though, the increases in overall tropical

cyclone frequency predicted by our downscaling would be

muted and perhaps even eliminated by feedbacks from the

cyclones to their large-scale environment in two-way coupled

simulations that adequately resolve tropical cyclones.

The large increase in the probability of rapid intensification

rates is perhaps one of the more worrying aspects of the effect

of climate change on tropical cyclones. Given the level of un-

certainty in contemporary tropical cyclone intensity forecasts,

increasing rates of intensification increase the chances of sur-

prises (Emanuel 2017).

Consistent with some observational studies (Kossin 2018),

there is a robust projected decrease in tropical cyclone trans-

lation speed in the subtropics, although not in the deep tropics.

This may increase the probability of stalling storms, such as

Harvey of 2017 and Dorian of 2019. These storms can be es-

pecially destructive because of prolonged rain and/or wind.

While the jury may still be out on the effects of climate

change on the incidence of weak storms, the growing consensus

on substantial increases in high-intensity storms and rainfall

paints a robust picture of increasing tropical cyclone risk as the

climate continues to warm.
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