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ABSTRACT

This paper describes the development of a model framework for Forecasts of Hurricanes Using

Large-Ensemble Outputs (FHLO). FHLO quantifies the forecast uncertainty of a tropical cyclone (TC) by

generating probabilistic forecasts of track, intensity, and wind speed that incorporate the state-dependent

uncertainty in the large-scale field. The main goal is to provide useful probabilistic forecasts of wind at fixed

points in space, but these require large ensembles [O(1000)] to flesh out the tails of the distributions. FHLO

accomplishes this by using a computationally inexpensive framework, which consists of three components:

1) a track model that generates synthetic tracks from the TC tracks of an ensemble numerical weather pre-

diction (NWP)model, 2) an intensity model that predicts the intensity along each synthetic track, and 3) a TC

wind field model that estimates the time-varying two-dimensional surface wind field. The intensity and wind

field of a TC evolve as though the TCwere embedded in a time-evolving environmental field, which is derived

from the forecast fields of ensemble NWP models. Each component of the framework is evaluated using

1000-member ensembles and four years (2015–18) of TC forecasts in the Atlantic and eastern Pacific basins.

We show that the synthetic track algorithm generates tracks that are statistically similar to those of the

underlying global ensemblemodels.We show that FHLOproduces competitive intensity forecasts, especially

when considering probabilistic verification statistics. We also demonstrate the reliability and accuracy of the

probabilistic wind forecasts. Limitations of the model framework are also discussed.

1. Introduction

Tropical cyclones (TCs) are complex weather systems

that bring flooding, storm surge, high winds, and other

hazards to many coastal and island locations. Each year,

TCs cause billions of dollars in damage to businesses and

property and result in the loss of numerous lives (Pielke

et al. 2008). Tomitigate such losses and allow vulnerable

populations to undertake life-saving preparations, TC

forecasts must be provided with sufficient lead time and

be reasonably accurate and reliable. Forecasts of TCs

have traditionally been separated into two categories:

1) track forecasts, which predict the location of the TC

center, and 2) intensity forecasts, which, in the Atlantic

basin, predict the 1-min maximum sustained surface

wind anywhere in the storm (Landsea and Franklin

2013). The forecasting community has used such metrics

to quantify errors in forecast models. Through sub-

stantial model improvements, better observations, and

improved data assimilation methods, forecast skills

for track and intensity have been steadily improving

(DeMaria et al. 2014).

One of the advantages of separating TC forecasts into

track and intensity is that it allows for straightforward

evaluation of model performance. However, there are

some significant drawbacks with this approach. First, by

definition, deterministic forecasts do not quantify the

uncertainty in the track and intensity of a TC, which can

be an issue if the intensity of the TC strongly depends

on its track. The concept of quantifying forecast uncer-

tainty is not new. In 1992, the National Meteorological

Center (NMC) and the European Centre for Medium-

Range Weather Forecasts (ECMWF) began running

Denotes content that is immediately available upon publica-

tion as open access.

Corresponding author: Jonathan Lin, jzlin@mit.edu

OCTOBER 2020 L I N ET AL . 1713

DOI: 10.1175/WAF-D-19-0255.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/35/5/1713/4986082/w

afd190255.pdf by guest on 05 Septem
ber 2020

mailto:jzlin@mit.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


ensemble numerical weather prediction (NWP) systems

to forecast the range of future weather conditions, by

slightly perturbing the initial conditions and model

physics of each member of the ensemble NWP system

(Tracton and Kalnay 1993; Molteni et al. 1996). Since

then, ensemble forecasts have proven to be vital to ad-

vancing probabilistic forecasts of weather, which in turn

allow us to quantify weather-related risks (Gneiting and

Raftery 2005).

The various components of the TC forecast (e.g.,

track, intensity, size, rainfall) affect the specific hazards

(e.g., wind speed, waves, surge inundation, and riverine

flood inundation) that are experienced at a given loca-

tion. The specific impacts that then result depend on the

vulnerability and exposure of the asset at that location.

Thus, the ability to quantify the uncertainty of TC wind

speed forecasts is of utmost importance, especially for

vulnerable communities. Much work on the intrinsic

predictability of TCs has focused on the importance of

both large-scale influences (Emanuel et al. 2004; Zhang

and Tao 2013; Kieu and Moon 2016) and convective-

scale processes (Van Sang et al. 2008; Sippel and Zhang

2008; Judt et al. 2016). Initial condition uncertainty in

the intensity and inner-core moisture has also been

suggested to play a significant role in TC forecast un-

certainty (Emanuel and Zhang 2016, 2017). In light of

this, deterministic forecasts of TCs may be highly mis-

leading, and probabilistic forecasts that can sample the

inherent forecast uncertainty are preferred. It is no sur-

prise, then, that ensemble prediction systems (EPSs) have

enhanced probabilistic forecasts of TCs (Majumdar and

Finocchio 2010; Hamill et al. 2011). Another approach to

generating members of an ensemble is to combine the

predictions of many different, independent, models, as is

done for some ‘‘superensemble’’ models (Williford et al.

2003; Vijaya Kumar et al. 2003); in fact, even a simple

average of the forecasted tracks from a variety of dy-

namical models has been shown to outperform any of

the individual models (Goerss 2000).

Since the wind field of a TC can span hundreds of

kilometers, the position and intensity of a TC are in-

sufficient for specifying the conditions at fixed points. In

practice, interested parties should be more concerned

about the wind speed probability distribution at a single

location (pointwise wind speed probabilities), rather

than the TC’s maximum wind speed or exact center lo-

cation. Unfortunately, due to computational constraints,

ensemble NWP models are typically run with inade-

quate horizontal resolution to resolve strong gradients

in pressure and temperature that are commonly found

in TCs, which often leads to large underestimation of

the wind speeds in the simulated TCs (Gentry and

Lackmann 2010; Gopalakrishnan et al. 2011). To make

matters worse, an ensemble NWP system usually does

not have enough ensemble members to flesh out the

highest wind speeds of a pointwise wind distribution.

Inadequate horizontal resolution and small ensemble

size mean that it is impractical to use the (insufficiently)

resolved wind fields from ensemble NWP models to

produce well-resolved probabilistic, pointwise forecasts

of wind speeds.

To address these issues and communicate the point-

wise uncertainty of TC winds, DeMaria et al. (2009)

developed the Monte Carlo probability1 (MCP) model

to estimate the pointwise probability of surface winds

exceeding the 34-, 50-, and 64-kt (1 kt’ 0.51ms21) wind

speed thresholds. For each forecast, the MCP model

generates computationally inexpensive track and inten-

sity realizations by adding random errors to the National

Hurricane Center’s official forecasts for track, intensity,

and wind radii. The errors are sampled from the official

forecast track/intensity/wind radii error distributions over

the most recent 5 years. However, this method forces the

uncertainty in the model to exactly equal the observed

average error; in practice, this usually does not reflect the

state-dependent uncertainty for a given forecast. Since

the forecast uncertainty for each TC can vary greatly,

the climatological uncertainty may poorly reflect the

true uncertainty in the track/intensity/wind radii fore-

casts. DeMaria et al. (2013) improved theMCPmodel to

separate the climatological error distributions into three

categories, based on the Goerss predicted consensus

error (GPCE), a parameter that measures the extent of

the track spread among an ensemble system (Goerss

2007). Goerss (2007) showed that the degree of uncer-

tainty of a forecast could be coarsely predicted based

on a low, medium, or high GPCE, and separated the

climatological error bins accordingly. While the inclusion

of GPCE improved the sharpness of the probabilistic

wind forecasts, the MCP model still uses climatologically

based forecast errors (stratified by basin) to generate

uncertainty in the official forecast. Ensemble-based

uncertainties, on the contrary, characterize the state-

dependent uncertainty in the large-scale system. Therefore,

a model that is able to draw upon the uncertainty repre-

sented in the ensemble members of an NWP model, while

maintaining the computationally inexpensive components

of the MCP model, could improve on probabilistic wind

speed forecasts.

We aim to develop a computationally inexpensive

pointwise TC wind speed prediction framework that is

1 The National Hurricane Center’s operational version of this

model is called the Tropical Cyclone Wind Speed Probabilities

Product.
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capable of incorporating the state-dependent forecast

uncertainty. To be practical, the framework should be

capable of quickly generating the large number of en-

semble members necessary to create a robust proba-

bilistic forecast. Our proposed framework will address

these concerns by using a large-ensemble prediction

system in which the ensemble members are computa-

tionally cheap, stochastic realizations reflecting the

uncertainty derived from dynamical ensemble models.

Furthermore, our framework is designed to readily scale

with advancements in the physics, resolution, and size

of ensemble NWP models, especially since there is still

much room for improvement in forecasting the intensity

of TCs (Emanuel and Zhang 2016).

The paper is organized as follows. Section 2 describes

the datasets used in this study. A detailed description of

Forecasts of Hurricanes Using Large-Ensemble Outputs

(FHLO) is provided in section 3, followed by an evalu-

ation of the model framework in section 4. Section 5

concludes with a summary and discussion.

2. Data

In this study, we use forecast data from EPSs as the

primary inputs to FHLO.We use two EPSs in particular:

the 51-member global ensemble ofECMWF, andNOAA’s

21-member Global Ensemble Forecast System (GEFS).

Both ensembles are run multiple times per day and

provide an estimate of forecast uncertainty.All ensemble

forecast data are obtained from an online portal gen-

erously made available by the THORPEX Interactive

Grand Global Ensemble (TIGGE) project (Bougeault

et al. 2010; Swinbank et al. 2016). The data are obtained

on a 0.58 3 0.58 resolution grid. The analyzed tracks of

TCs in ensemble forecast models are obtained from

the TIGGE Model Tropical Cyclone Track Dataset

(National Centers for Environmental Prediction et al.

2008), which is obtained from the Research Data

Archive (RDA) maintained by the National Center

for Atmospheric Research (NCAR).

We also require initial conditions at each initialization

time. For the ECMWF ensemble, we use the reanalysis

fields from the ERA5 atmospheric reanalysis (Hersbach

2016; Copernicus Climate Change Service 2017). Note

that these fields can have significant differences from

the analysis fields of the operational ECMWF model.

However, we require high-resolution soundings in order

to estimate the potential intensity. Since the high-

resolution analysis fields of the operational ECMWF

model are not available to the public, we have used the

ERA5 fields. For the GEFS, we use the analysis fields

from the Global Forecast System (GFS) analysis fields

at each model initialization time, obtained through the

RDA at NCAR (National Centers for Environmental

Prediction 2015). All analysis fields are obtained on a

0.258 3 0.258 resolution grid. As part of initialization,

we also require initialization of the TC itself. To obtain

real-time estimates of TC position, intensity, and wind

structure, we obtain automated tropical cyclone fore-

casting (ATCF) a-decks for each model initialization

time (Sampson and Schrader 2000).

To obtain real-time estimates of the sea surface tem-

perature, we use the National Centers for Environmental

Information’s 0.258 Optimum Interpolation Sea Surface

Temperature (OISST) dataset (Reynolds et al. 2008).

The sea surface temperature data is provided daily.

Finally, we use the HURDAT2 best track data to

evaluate the performance of the model (Landsea and

Franklin 2013).

3. The large-ensemble model for tropical cyclones

In this work, we model TCs by assuming that a TC

vortex is embedded within an evolving large-scale en-

vironmental field that ultimately determines the TC’s

intensity. From an ensemble NWP model, such as the

GEFS, we estimate environmental quantities relevant

to the intensity of a TC, such as the saturation entropy

deficit and vertical wind shear (Emanuel et al. 2004). By

deriving these quantities from multiple members of an

ensemble model, we can sample the internal variability

in each environmental field. The track module of the

large-ensemble model generates realistic tracks from

the set of ensemble TC tracks. These tracks, combined

with the various environmental fields along these tracks,

serve as input into FAST (Emanuel 2017), a fast TC

intensity model that emulates an idealized, axisym-

metric TC model (Emanuel et al. 2004). FAST evalu-

ates the intensity, or maximum azimuthal wind speed,

along a specified track through one realization of the

large-scale environmental field. Finally, the intensity and

environmental fields are used as inputs into a parametric

surface windmodel, to generate a full spatial wind field of

the TC (Chavas et al. 2015). Figure 1 summarizes the

overall flow of information in the large-ensemble model.

Each component of the complete model framework is

explained in depth in the following sections.

a. Synthetic track model

In this section, we describe a track algorithm that

draws information from the ensemble track covariance

to generate a large number of statistically indistinguish-

able synthetic tracks. The model is physically motivated

by the beta-and-advection model (Marks 1992), which

assumes that TCs are advected by some large-scale

steering flow. Since we do not expect the large-scale
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flow to have considerable fluctuations on short (hourly)

time scales, we expect there to be some correlation be-

tween the translational speed vector from one time step

to the next. Note that the forecasted center of TCs is

typically output in 3- or 6-h increments.

In light of this, we model the distribution of TC

translational speeds using aMarkov-chain solution. This

means we condition on the previous time step transla-

tional speed, ut21 and yt21, where ut21 and yt21 are the

zonal and meridional translational speeds at time step

t 2 1, respectively, to determine the translational speed

at the next discrete time step. Mathematically, this cor-

responds to P(ut, ytjut21, yt21). To properly describe this

conditional distribution, we expand this as

P(u
t
, y

t
ju

t21
, y

t21
)5

P(u
t21

, y
t21

,u
t
, y

t
)

P(u
t21

, y
t21

)
.

Next, we model both joint probability distributions as a

mixture of k Gaussian distributions:

P(u
t21

, y
t21

, u
t
, y

t
)5�

k

i51

w
i
N(m

i
,S

i
), and

P(u
t21

, y
t21

)5�
m

j51

w
j
N(m

j
,S

j
),

wherewi are the weights of each Gaussian mixture, such

that �k

i51 5 1. The quantities mi, mj, Si, and Sj must

be estimated using the track displacements from the

ensemble model. In this study, we set k 5 1, though

future work can explore how increasing k affects the

track model.

Given (ut21, yt21), we can step the model forward

by drawing from the conditional probability above.

Integrating forwards in time will generate a synthetic

track. The statistical algorithm is relatively fast, as 1000

synthetic tracks can be generated in approximately five

minutes on a conventional laptop. For robustness, we

require that at least 75%of the global ensemblemember

tracks have not dissipated before proceeding to the next

time step.

Note that this method directly depends on the skill of

the ensemble prediction system. While this means that

the accuracy of the ensemble covariance algorithm

should scale alongside the general accuracy of ensemble

NWP models, it also indirectly ties the track algorithm

to how accurately the ensemble NWP models simulate

the intensity of the analyzed TC. If the TC dissipates too

early in the ensemble prediction model, the ensemble

track covariance model will generate tracks that also

dissipate too early.

Since a potentially unlimited number of synthetic

tracks can be generated, robust probabilistic statistics

can also be generated. Figure 2 shows an example of the

corresponding 75-km strike probability for the forecast

of Hurricane Irma (2017), initialized at 0000 UTC

5 September 2017. While we observe that the density of

the 75-km strike probability corresponds well with the

density of the actual ensemble tracks for this single case, a

large sample size with probabilistic evaluation is needed

to fully evaluate the quality of the framework’s track

predictions. This will be further examined in section 3d.

b. Intensity model

The intensity model evaluates the surface azimuthal

wind speed along a particular track. Though any com-

putationally inexpensive intensity model can be used in

the large-ensemble framework, we choose to use the

FAST system, a pair of coupled, nonlinear ordinary

differential equations that describe the evolution of V,

the maximum azimuthal wind, and m, an inner-core

moisture variable that is bounded between 0 and 1

(Emanuel and Zhang 2017; Emanuel 2017). The choice

was motivated primarily because the system is framed

around physically based parameters that can be easily

derived from ensemble fields. The equations are in-

cluded below:

dV

dt
5

1

2

C
k

h
abV2

pm
3|fflfflfflfflffl{zfflfflfflfflffl}

(1)

2 (12 gm3)V2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
(2)

2
664

3
775 , (1)

dm

dt
5

1

2

C
k

h
(12m)V|fflfflfflfflfflffl{zfflfflfflfflfflffl}

(3)

2 xSm|ffl{zffl}
(4)

2
64

3
75 , (2)

b5 12 «2 k , (3)

g5 «1ak , (4)

«5
T
s
2T

o

T
s

, and (5)

FIG. 1. Flow of information in FHLO.
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k5
«

2

C
k

C
d

L
y

R
d

q
s
*

T
s

, (6)

where Ck is the surface enthalpy coefficient, Cd is the

surface drag coefficient, h is the atmospheric boundary

layer depth, Vp is the potential intensity, a is an ocean

interaction parameter that varies between 0 and 1,

x is the midlevel saturation entropy deficit, S is the

250–850-hPa vertical wind shear, Ts is the surface

temperature, To is the outflow temperature, Ly is a

constant latent heat of vaporization, Rd is the dry gas

constant, qs* is the surface saturation specific humidity,

and « is the thermodynamic efficiency [see Emanuel

(2017) for further details]. Note that in Emanuel (2017),

x 5 2.2, which is a typical value for the saturation en-

tropy deficit, but as discussed presently, we will evaluate

its time-evolving value from the global ensemble. The

behavior of this system is controlled by four key terms:

1) a spinup term that represents intensification of the

vortex toward its potential intensity because of surface

fluxes, 2) a spindown term from the thermodynamic

dampening influence of downdrafts in the inner core,

3) a moistening term that represents surface moisture

fluxes from the ocean, and 4) a drying term that mimics

eddy entropy fluxes into the TC’s eyewall. Though re-

markably simple, the FAST equations do have some

limitations, which are discussed in the conclusion.

The FAST equations are integrated forwards in time

using a Runge–Kutta fourth-order numerical scheme

with a time step of 450 s. As in Emanuel (2017), we set

Ck 5 1.2 3 1023, h 5 1400m, « 5 0.33, k 5 0.1. Thus,

given an initial intensity and inner-core moisture, as well

as the vertical wind shear, saturation entropy deficit, and

potential intensity along a track, we can solve for the

time evolution of V and m. It is worth nothing that in

order to properly calculate a, the ocean interaction pa-

rameter that modulates Vp, one needs the ocean mixed

layer depth hm as well as the sub–mixed layer thermal

stratification G. For simplicity, we choose to use clima-

tological values for hm and G (Levitus 1982). Future

work will incorporate this information from a real-time

ocean forecast model. Ocean mixing is switched off

whenever the sub–mixed layer depth is larger than the

depth of the ocean. Finally, a 0.258 bathymetric dataset

is used to determine when the center of the TC is over

land, during which the potential intensity is set to zero.

In this framework, the three most important envi-

ronmental quantities that influence the intensity of a TC

are 1) vertical wind shear, 2) saturation entropy deficit,

and 3) potential intensity. These dynamic and thermo-

dynamic quantities are defined to be environmental

fields, and thus should be evaluated assuming that the

considered TC does not exist. To progress with the

perspective of modeling a TC in a synthetic environ-

ment, we need to remove any effects on these fields that

are induced by an analyzed TC.

c. Environmental quantities

1) VERTICAL WIND SHEAR

To calculate the environmental vertical wind shear,

the circulation induced by the TCmust be removed.One

method, for instance, averages winds over some dis-

tance larger than the radius of the inner core of the TC

(DeMaria and Kaplan 1994), while other methods set

the vorticity and divergence to zero within a specified

distance from the TC center, and invert the Poisson

equation to find the streamfunction and velocity po-

tential associated with the vortex (Davis et al. 2008;

Galarneau and Davis 2013). Since we desire a continuous

spatial field of environmental winds uenv, we choose the

latter method, setting the relative vorticity and divergence

of the environmental field to zerowithin an inversion radius

of r* from the vortex center. We use r*5 400 km, where

the magnitude of the axisymmetric component of the vor-

tex’s relative vorticity becomes comparable to that of the

FIG. 2. The 75-km strike probability, for Hurricane Irma in the Atlantic basin, using 1000

synthetic tracks generated from the ECMWF ensemble. Forecast initialized at 0000 UTC

5 Sep 2017. Overlaid lines depict TC centers from the ECMWF ensemble.
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environmental field. Note that r*5 400 km is around the

middle range of r* values used by Galarneau and Davis

(2013), and close to themedian outer radius ofTCs, inferred

using scatterometer data (Chavas and Emanuel 2010).

Fixing r* is perhaps not the best choice, as Galarneau and

Davis (2013) showed that the resulting environmentalwinds

are in fact sensitive to r*. Future work could include sto-

chastic perturbations to r*, or optimizing r* from environ-

mental profiles of relative vorticity. Defining zvortex and

dvortex as the vorticity and divergence identified as part of

the vortex, respectively, we have

=2c
vortex

5 z
vortex

=2F
vortex

5 d
vortex

u
vortex

5=F
vortex

1 k̂3=c
vortex

u5 u
env

1 u
vortex

, (7)

where u is the wind velocity vector, c is the stream-

function, F is the velocity potential, = is the gradient

operator, and =2 is the Laplacian operator. To solve

for uvortex, we must invert the Laplacian operator on a

sphere to obtain the corresponding streamfunction and

velocity potential. Details on this inversion are included

in the appendix. After calculation of the environmental

wind at 250- and 850-hPa, we subtract the two to obtain

the environmental vertical wind shear. We chose these

two levels based on DeMaria and Kaplan (1994), who

found that the vertical wind shear between the 250- and

850-hPa levels correlates well with intensity changes

in tropical cyclones, though alternative pressure levels

could also be used to calculate the vertical wind shear.

2) MIDLEVEL VENTILATION

Midlevel ventilation, or the entrainment of low-

entropy environmental air into a TC at midlevels, is one

pathway by which vertical wind shear can interact with

a TC and cause it to weaken (Simpson and Riehl 1958;

Tang and Emanuel 2010). In the ventilation hypothesis,

vertical wind shear leads to asymmetric processes that

induce eddy fluxes and mixing between the TC eyewall

and its environment. If the environmental air is sufficiently

low in entropy, downdrafts will occur in the eyewall and

disrupt warming of the inner core. For a TC with a satu-

rated inner core, the normalized eddy fluxes that result

from such ventilation are proportional to xS [see the

appendix of Tang and Emanuel (2012)], where S is the

250–850-hPa vertical wind shear, and x is a scalar that

represents the saturation entropy deficit normalized by the

air–sea thermodynamic disequilibrium, as in Eq. (8):

x5
s
m
*2 s

env

s
s
*2 s

b

. (8)

The pseudoadiabatic entropy s can be approximated

following Bryan (2008):

s5 c
p
log

�
T

T
0

�
2R

d
log

�
p
d

p
0

�
1

L
y
q

T
2R

y
q logðH Þ ,

where cp is the specific heat of dry at constant pressure,

q is the specific humidity,H is the relative humidity, pd
is the dry pressure,Ry is the water vapor gas constant, sm*

is the inner-core saturation entropy, senv is the envi-

ronmental entropy, ss*is the saturation entropy at the sea

surface, and sb is the entropy at the boundary layer.

To calculate x at a fixed pressure level p from gridded

data, we first assume that temperature perturbations on

pressure surfaces are small, and that the inner core is

saturated (Emanuel et al. 2008), such that the numerator

becomes

s
p
*2 s

p
’

"
L

y
q*

T
ð12H Þ1R

y
q logH

#�����
p

.

To evaluate these quantities, we assume that the air at

the sea surface is saturated and at the same temperature

and pressure as the sea surface. We also assume that

sb 5 sLCL* 5 sp*, where sLCL* is the saturation entropy at the

lifted condensation level. The first step assumes adi-

abatic motion from the boundary layer to the lifted

condensation level, which is defined as the top of the

boundary layer, and the last step follows from moist

convective neutrality. Then, we have

x
p
5

�
L

y
q*T21ð12H Þ1R

y
q logH

���
p

s
s
*2 s

p
*

.

While the environmental saturation deficit is typically

evaluated at p 5 600 hPa (Emanuel 2013), consistent

with the midlevel ventilation hypothesis, the 600-hPa

level is not available through the TIGGE database.

Instead, we calculate xp at p5 500 hPa and p5 700hPa

and take the gridpoint maximumbetween the two levels.

To obtain the x used in FAST, we take the Nth per-

centile of the distribution of the saturation entropy

deficit within renv of the TC center. Since any down-

drafts that occur near the core are detrimental to the

TC, we take relatively large values of N. The saturation

entropy deficit typically increases away from the core,

since deep convection near the inner core saturates the

midlevels, such that if N is large enough, we are effec-

tively diagnosing an environmental entropy deficit. To

calculate the denominator, we take the median of the

air–sea thermodynamic disequilibrium over the inner

200 km from the TC center. When the air–sea disequi-

librium is negative, which can occur, for instance, at cold
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SSTs, we set x 5 xd. We also cap x to a value of xd. We

estimated the optimal values of N, renv, and xd, by

finding values that minimized the mean absolute error

in intensity. We found N 5 90th percentile and renv 5
1000km for the Atlantic basin, N 5 50th percentile and

renv 5 900 km for the eastern Pacific basin, and xd 5 4.

The large differences in N between the two basins is

largely a result of differences in climatology; the density

of tropical cyclone forecasts maximizes in thermody-

namically favorable environments in the Atlantic, while

the opposite is true in the eastern Pacific.

3) POTENTIAL INTENSITY

The potential intensity of a TC is a theoretical upper

bound on its maximum wind speed (Emanuel 1986).

Potential intensity has been verified as a reasonable

upper bound on the intensity of real TCs (Emanuel

2000), and is defined as

V2
p 5

T
s
2T

o

T
o

C
k

C
d

(k*2 k) ,

where k is the enthalpy of the boundary layer air, and k*

is the saturation enthalpy of the sea surface. To calculate

potential intensity, an environmental sounding with a

high resolution in the vertical is required. Since potential

intensity must be evaluated at the eyewall of a TC, we

must remove the effect of the global ensemble system’s

warm-core anomaly, which acts to reduce the buoyancy

of a parcel lifted from the surface. Previousmethods that

attempt to account for this deficiency use time-lagged

potential intensity fields (Emanuel et al. 2004). One

weakness of this method is that it ignores any short-term

variability of potential intensity. Instead, we opt to smooth

out the effects of an analyzed TC. To remove the ther-

modynamic effect of an analyzed TC, we apply a 9-box

smoother across a 108 3 108 grid box centered on the

TC, to the temperature, specific humidity, and sea level

pressure fields, holding the boundary fixed and smoothing

inwards. This first-order approximation successfully re-

moves the potential intensity minimum near the vortex

center and allows us to obtain a robust estimate of the

environmental potential intensity. In this study, we cal-

culate the spatially varying potential intensity using the

analysis (initialization) fields, which have a high vertical

resolution. The potential intensity field is then kept fixed

throughout the forecast, though the potential intensity

of the TC can still change as it moves in space.

d. Wind model

Since FAST outputs the maximum surface azimuthal

wind speed, we use a parametric wind model and another

parameterization to obtain the full TCwind field as well as

the maximum surface wind speed. We first obtain the

axisymmetric wind profile by using the physically based

windmodel developed byChavas et al. (2015).We chose

this model because of its basis on physical principles,

though other wind models, such as the radii-CLIPER

model (Knaff et al. 2007), could be used as well. The

wind model developed in Chavas et al. (2015) separates

the axisymmetric wind field into two regions, a con-

vecting inner region, and a subsiding outer region, and

the equations are below for convenience:

M
inner

M
m

5
2(r=r

m
)2

11 (r=r
m
)2
, and

›M
outer

›r
5

2C
d

W
cool

(rV)2

r20 2 r2
,

where M 5 rV 1 (1/2)fr2 is the angular momentum per

unit mass, Minner (Mouter) is the angular momentum in

the inner (outer) region, r is the radius from the vortex

center, V is the azimuthal wind, r0 is the outer radius (or

radius of vanishing wind), rm is the radius of maximum

winds, Wcool is the subsidence rate from tropospheric

radiative cooling, and Mm(rm, Vm) is the angular

momentum at the radius of maximum wind, where Vm

is the maximum azimuthal wind speed. Because we

lack observations of Wcool, we set 2Cd/Wcool 5 1 sm21,

for simplicity, though the model does have some de-

pendence on the strength of Wcool (Chavas and Lin

2016). The full axisymmetric wind field can be resolved

by fixing two of the three free parameters, rm, r0, andVm.

The maximum azimuthal wind speed Vm is readily ob-

tained from FAST, and we choose to specify r0 (details

on selecting r0 are described in section 3e). After ob-

taining the surface axisymmetric wind field, we apply a

second model to obtain the asymmetric component of

the wind field. This model is based on the isallobaric

wind, which occurs whenever the vortex propagates with

respect to the low-level wind, which will happen when

there is vertical wind shear S. In a reference frame

moving with the low-level vortex, vorticity must be

increasing downshear of the vortex center, and for

this to happen, there must be low-level convergence.

We crudely take this into account by representing the

vorticity in terms of the maximum azimuthal wind V

divided by a vortex radial length scale, and the vortex-

relative vorticity advection by the shear vector times

this vorticity divided by the same length scale. This

yields the low-level convergence downshear of the

low-level vortex. The associated convergent velocity

component is then obtained by integrating over the

same length scale. With some empirical adjusting of

constants, this results in
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where V is the axisymmetric wind, ut is the translational

speed of the vortex, S is the 250–850-hPa vertical wind

shear (m s21), f is the latitude of storm center, jVj is the
magnitude of the axisymmetric wind (kt), and unet is the

net wind at the surface. Finally, the maximum surface

wind speed is determined by taking the maximum mag-

nitude of unet over the domain.

e. Initialization and parameter estimation

The final component of FAST pertains to initializa-

tion. A poor initialization can lead to significant errors

in the short-range forecast period (Emanuel and Zhang

2016, 2017). Since we want to include initial intensity

uncertainty in the probabilistic system, we create a syn-

thetic perturbation of the TC intensity analysis over

the past 24 h of the analyzed TC (see appendix for de-

tails). Uncertainties in the intensity observations are

taken from climatological errors (Landsea and Franklin

2013). For each synthetic ensemble member, we use the

environmental parameters from the analysis fields to

drive FAST, and add a time-varying forcing term to the

azimuthal wind [Eq. (1)] such that the modeled maxi-

mum surface wind best matches the synthetic pertur-

bation of the observed TC intensity. The initialization

period runs from 48h before the initial forecast time

until the initial forecast time, where the forcing term to

the azimuthal wind equation then decays in magnitude

as exp[2(t/t0)
2], where t is the forecast lead time, and

t0 5 1 day.

To initialize the wind field, we take the initial anal-

ysis of the maximum extent of the 34-, 50-, and 64-kt

winds in each quadrant [obtained from the combined

automated response to query (CARQ) lines of the

ATCF a-decks], and find the corresponding value of

r0 that allows the modeled asymmetric wind field to

best match the analysis. Furthermore, to combat large

negative biases in the axisymmetric wind model at

radii where 3 &; r/rm &; 6 (see Fig. 9 in Chavas et al.

2015), we add a shape parameter k to the axisym-

metric wind profile, that is, for r. rm, V(r, k)5 V(r)k.

Then, to initialize the wind field, we find r0 and k such

that the full asymmetric wind field best matches the anal-

ysis radii in each quadrant. Finally, if an official forecast of

the radii in each quadrant is available, the optimal r0
and k, given the official forecast of intensity, are used to

interpolate r0 and k forward in the forecast. Otherwise,

r0 and k are kept constant in the forecast. If an initial

analysis and forecast of the wind radii do not exist, we

set r0 5 700 km and k 5 1. This may not be realistic

but could be improved upon by using the model de-

veloped in Knaff et al. (2017), which predicts the

maximum extent of the 34-, 50-, and 64-kt winds.We do

not explicitly perturb r0, though this could be the sub-

ject of future work.

4. Evaluation of the large-ensemble model

To robustly evaluate the skill of FHLO, we run

1000-member ensemble reforecasts for all 0000 and

1200 UTC cycle TC forecast cases in the Atlantic and

eastern Pacific basins during the years 2015–18 (the

choice of 1000 members is described in the following

section). Since all of the aforementioned data used to

generate a probabilistic forecast are available in real

time, these reforecasts can be considered equivalent

to late-cycle real-time forecasts. Since the skill of

FHLO also depends on the skill of the ensemble, we

run two variations of 1000-member ensembles, one us-

ing data from the ECMWF ensemble (FHLO-ECMWF)

and the other from the GEFS (FHLO-GEFS). We also

combine the two into a 2000-member superensemble,

which we will denote FHLO-Super. We evaluate the

performance of FHLO by using the HURDAT2 best

track data as the observed track, intensity, and wind

radii of each TC (Landsea and Franklin 2013). For

each forecast case, we predict the track distribution,

intensity distribution, and probability of exceedance

for the 34-, 50-, and 64-kt wind speed thresholds.

a. Ensemble size

The choice of running 1000-member ensembles is

motivated primarily by looking at probability distribu-

tions of wind speeds from TCs at a fixed point. To il-

lustrate this, we generate pointwise forecasts of wind

speed from Hurricane Maria at San Juan, Puerto Rico,

using the ECMWF ensemble initialized on 0000 UTC

18 September 2017 as input into FHLO. For demon-

stration, we use 100- and 1000-member FHLO-ECMWF

ensembles, as well as a 51-member FHLO-ECMWF

model that only uses the tracks from the original

ECMWF ensemble (RAW-ECMWF). Figure 3 shows

the time-varying maximum wind speed from Hurricane

Maria at San Juan, Puerto Rico, from the 1000-member

FHLO-ECMWF and the 51-member RAW-ECMWF.

From the eye test, there is a sampling issue with

RAW-ECMWF; there simply are not enough ensemble

members to resolve the tail of the distribution. To

be more quantitative, we estimate the nondimensional

damage ([0, 1]), f, that represents the fraction of property

lost [see Eq. (1) of Emanuel (2011)]:
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where V is the maximum wind speed, Vthresh is the wind

speed at which no damage occurs, and Vhalf is the wind

speed at which half damage occurs. As the right column

of Fig. 3 shows, there is an inferred probability of

zero for f . 0.3 from the 51-member RAW-ECMWF.

However, as we increase the size of the ensemble, the

right tail of the distribution, which represents the most

destructive scenarios, is better resolved. Thus, large-

ensemble forecasts are necessary to flesh out the tail

of wind distributions, which is often critical to decision

making. With only a small number of ensemble mem-

bers, it is extremely difficult to create smooth PDFs of

pointwise wind forecasts. We settled on a 1000-member

ensemble, since the marginal return on resolving the tail

diminishes with further increases in ensemble size.

b. Track forecasts

To verify that the synthetic track algorithm produces

tracks that are statistically similar to the set of TC tracks

of a given EPS, we evaluate the track error distribution

and spread from forecasts of 1) themean of the synthetic

tracks, and 2) the mean of the ensemble system. A

two-sample Kolmogorov–Smirnov test indicates that

the track error distributions of forecasts from both

methods are statistically similar at all lead times, re-

gardless of the ensemble, with a 5 0.05 (not shown).

Figure 4 shows the error between the observed track

and the mean of the 1000-member ensemble, which is

driven by the tracks of different EPSs. FHLO-GEFS has

the smallest initial error for both basins, since the GEFS

ensemble relocates the analyzed vortex to the best-guess

position at initialization (Liu et al. 2000). In the Atlantic

basin, FHLO-ECMWF outperforms all of the other indi-

vidual models for all other lead times, while FHLO-GEFS

has the best performance in the eastern Pacific. The

multimodel superensemble, has the lowest mean abso-

lute error (MAE) for almost all lead times in both ba-

sins, which is a well-known property of superensembles

(Williford et al. 2003; VijayaKumar et al. 2003). Of course,

the best metrics for the evaluation of a large ensemble

are probabilistic metrics. A reliability diagram assesses

the observed probabilities as a function of the forecasted

probabilities. A model is said to be reliable if the ob-

served frequencies of an event match the observed fre-

quencies of its forecast probability—that is, the model

performs well all the time without its forecasts being

overconfident or underconfident. A perfectly reliable

model falls along the 1:1 line in a reliability diagram.

Figure 5 shows the reliability curve for the probability

that the center of the TC is within 75-km of a particular

grid point (using a 0.18 resolution grid), cumulative over

5 days. In general, the results demonstrate the reliability

FIG. 3. Forecasts, initialized at 0000 UTC 18 Sep 2017, of the time-varying maximumwind speed fromHurricane

Maria, (top left) across the entire storm and (bottom left) at San Juan, Puerto Rico. Forecasts use the original

1000-member FHLO-ECMWF model and a 51-member FHLO-ECMWF model (RAW-ECMWF) that uses only

the original ECMWFensemble tracks. BEST indicates the best track intensity ofHurricaneMaria. (right)Distribution

of nondimensional damage f, following Emanuel (2011), for wind speeds observed at San Juan at t 5 60 h

from initialization, for the RAW-ECMWF model (51 tracks), as well as the 100-member and 1000-member

FHLO-ECMWF ensembles.
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of the FHLO-ECMWF strike probabilities, as well as

the overconfidence of the FHLO-GEFS strike proba-

bilities. These results are similar to those obtained in

Titley et al. (2020). We forgo a detailed evaluation of

the synthetic tracks in lieu of evaluating the wind speed

exceedance probabilities in section 4d, as the latter can-

not be accurate if the former is not.

c. Intensity forecasts

In this section we evaluate the intensity forecasts of

FHLO using traditional, deterministic statistics, as well

as probabilistic metrics. When evaluating, we do not

explicitly terminate a TC when its simulated intensity

falls below the tropical depression threshold (17m s21).

Figure 6 shows a model comparison of the mean ab-

solute error in intensity as a function of time since

initialization, for forecasts where the initial intensity

is greater than 30m s21 (the reason for applying this

filter is described below). Since the mean absolute error

is a deterministic statistic, we take the mean of all the

members of each FHLO ensemble as its deterministic

model forecast. In both basins, the intensity error is

largely the same between FHLO-ECMWF, FHLO-GEFS,

and FHLO-Super for the first two days, likely since the

large-scale environments of the ECMWF ensemble and

GEFS do not diverge significantly for these short-term

time scales. The intensity errors begin to diverge around

two days, after which we observe that FHLO-ECMWF

and FHLO-Super outperform FHLO-GEFS. The FHLO-

based intensity forecasts also have a larger absolute error

than the Hurricane Weather Research and Forecasting

(HWRF) Model, though the FHLO-based ensembles

perform comparably to HWRF in the eastern Pacific.

The FHLO-based ensembles have a slight negative bias

in the first two days of initialization. In general, however,

the bias over the sample set is comparable to that

of HWRF.

We also construct an idealized lower bound on the

intensity error of the FHLO-based ensembles, to under-

stand the best-case performance of a simple intensity

model such as FAST. To gain insight into this, we take the

exact same forecast cases, but instead use near-perfect

initial conditions and analysis fields to derive the en-

vironmental parameters. The near-perfect initial con-

ditions are achieved by running the aforementioned

initialization procedure using the best track of the TC,

forcing the model to the observed intensity. Once the

FIG. 4. Mean absolute error (km) in track as a function of the time since initialization, for the mean of

1000 synthetic tracks for the FHLO-ECMWF, FHLO-GEFS, and FHLO-Super ensembles, as well as the

HWRF Model. Sample set includes forecasts from 2015 to 2018 in the (left) Atlantic basin and (right) eastern

Pacific basin.

FIG. 5. The reliability curve for 75-km strike probability, cumu-

lative over 5 days, using the FHLO-ECMWF, FHLO-GEFS, and

FHLO-Super ensembles. Solid black line indicates perfect reliability.

Sample set includes forecasts from 2015 to 2018 in the Atlantic and

eastern Pacific basins, and sample size for each model, as a function

of forecast probability, is shown in the inset.
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initialization procedure hits the initialization time, the

model is allowed to evolve freely. Then, the lower-bound

error is computed by the divergence of the FAST model

from the best track intensity. This is shown as the dashed

black curve in Fig. 6. In the eastern Pacific basin, the lower-

bound curve suggests that with improved ensemble fore-

casts and model initialization, the intensity error of the

FASTmodel will also decrease. This is somewhat less true

in the Atlantic basin; the lower-bound curve suggests that

better initialization could result in improvements in fore-

casts with lead times of up to 2 days. For lead times longer

than 2 days, however, the lower-bound curve is nearly in-

distinguishable from the forecast errors. This may be due

to low inherent predictability and/or model error stem-

ming from suboptimal parameterization of the ventilation,

though further investigation is outside the scope of this

study. Note that these bounds are derived using the

current framework of the model; improvements to the

model itself could lower the bound further. Last, in

some sense, this curve can be loosely compared to the

model error of FAST. While simple models, such as

FAST, are unable to physically resolve the atmosphere

and are often less accurate than more complex models,

they are computationally inexpensive and can be used

in large-ensemble studies such as this one. We believe

that FAST makes a relatively good trade-off between

simplicity and accuracy, though it is unlikely to be the

best we can do.

Next, we evaluate the FHLO-based intensity fore-

casts using probabilistic metrics. A convenient metric to

compare deterministic and probabilistic forecasts is the

continuous ranked probability score (CRPS), which is

the integrated squared difference between the cumula-

tive distribution function (CDF) of the forecast and the

observation:

CRPS(F, y
obs

)5

ð‘

2‘

[F(y)21(y2 y
obs

)]2 dy ,

where F(y) is the CDF of the forecast, yobs is the ob-

served intensity, and 1 is the Heaviside step function.

For a deterministic forecast, the CRPS simplifies to the

mean absolute error. Figure 7 shows the CRPS as a

function of time since initialization, and we see similar

FIG. 6. The (top) mean absolute error and (bottom) bias of the FHLO-ECMWF, FHLO-GEFS, and

FHLO-Super ensemble forecasts. Only forecasts where the initial intensity is greater than 30m s21 are included in

the samples. The dashed black line represents a lower bound on the intensity error, achieved by using near-perfect

initialization and a perfect track. Sample set includes forecasts from 2015 to 2018 in the (left) Atlantic basin and

(right) eastern Pacific basin.
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patterns in the results as compared to those of the

mean absolute error. In the Atlantic basin, the CRPS

of the FHLO-based ensembles is close to that of the

deterministic HWRF forecast, for forecast lead times

shorter than four days. For lead times longer than four

days, the CRPS of the FHLO-based ensembles is lower

than that of HWRF. In the eastern Pacific, the CRPS

of the FHLO-based ensembles is lower than that of

HWRF. This suggests that characterizing both the

mean state and spread of the large-scale flow is para-

mount to quantifying the uncertainty in the future in-

tensity of a TC.

Finally, it is worth commenting on the filter we used

above, where we only considered forecasts where the

initial intensity is greater than 30m s21. The filter was

specified in order to bypass the issue of cyclogenesis. In

general, the mean absolute error in intensity increases

as the initial intensity threshold in the evaluation filter is

decreased (not shown), for a variety of reasons. While

this may point to deficiencies in applying models based

on idealized, axisymmetric TC theory to weak dis-

turbances, there may be additional reasons for this

behavior. For instance, a model that does not properly

capture the observed intensification rate distribution

but is tuned to provide sluggish intensification for

weak storms could have the smallest mean absolute

error in intensity, since most weak storms do not in-

tensify into strong TCs. While the FAST system does

capture the observed intensification rate distribution

(Emanuel 2017), it has the tendency to overintensify

weak disturbances, so long as the midlevel ventilation

is not large. Regardless, much work has suggested that

the intrinsic predictability of cyclogenesis and subse-

quent intensification is low (Sippel and Zhang 2008;

Zhang and Sippel 2009; Zhang and Tao 2013), and thus

TC genesis remains a significant forecasting challenge

(Rappaport et al. 2009).

d. Probabilistic wind speeds

In this section, we evaluate the 34-, 50-, and 64-kt wind

speed exceedance probabilities that are generated from

the FHLO-based ensembles. For each ensemble mem-

ber, and at each time step, the full wind field of the TC is

estimated. The evaluation procedure is similar to that in

DeMaria et al. (2009), where the probabilities are gen-

erated by summing the number of ensemble members

where the winds exceed a particular threshold, for each

individual grid point. Following the evaluation proce-

dure of DeMaria et al. (2009), we do not include forecast

cases of extratropical transition. To do this, we trun-

cate any forecasts that extend beyond when the official

forecast predicts a transition to an extratropical storm.

The wind probabilities should also account for the tim-

ing of dissipation, and thus we do notmodify the forecast

if the analyzed storm in the best track terminates be-

fore the end of the forecast, and vice versa. The latter

situation is often more problematic for this model.

This is because the ensemble tracks depend on how

well the ensemble models resolve the TC on their rela-

tively coarse grids. Finally, in this section, we only evaluate

forecasts where the initial TC position is equatorward of

308. This is a crude way to filter for storms that are

characteristically more tropical, which is when we ex-

pect the FHLO-based ensembles to work the best. The

aforementioned wind model also has more difficulty

representing highly asymmetric wind fields, which is

more likely to be the case for storms that are influenced

by baroclinicity. Nevertheless, a large fraction (70% in

FIG. 7. The continuous ranked probability score of the FHLO-ECMWF, FHLO-GEFS, and FHLO-Super

ensemble forecasts. Only forecasts where the initial intensity is greater than 30 m s21 are included in the

samples. Sample set includes forecasts from 2015 to 2018 in the (left) Atlantic basin and (right) eastern

Pacific basin.
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Atlantic, 99% in the eastern Pacific) of the initial posi-

tions of our samples occurred south of 308. Extending
the model verification to latitudes north of 308 is left to
future work.

Figure 8 shows an example of the exceedance proba-

bilities for the 64-kt wind speed threshold, cumulative

over the 5-day forecast period, for Hurricane Irma. The

analyzed maximum extent of 64-kt winds, indicated by

the thick black contours, are reasonably within the bounds

of the probabilistic forecast, except for a mild along-track

error. To obtain robust evaluation statistics, we evaluate

all the forecasts by analyzing the associated reliability

diagrams, multiplicative bias curves, and the maximum

threat scores (Wilks 2011).

Figure 9 displays a reliability diagram for the cumu-

lative exceedance wind probabilities using different

wind speed thresholds, separated by basin and cumula-

tive time. The results indicate that in general, the ex-

ceedance probabilities generated by the FHLO-Super

model are reliable at the examined cumulative times and

in both basins. We also observe that for probabilities

between 0% and 50%, the 34-kt winds are more over-

dispersive than those for the 50-kt winds, which in turn

are more overdispersive than the 64-kt winds. This is

likely due to two factors. First, negative biases at r/rm’ 4

in the axisymmetric wind model cannot be completely

eliminated with the shape parameter, though the bias

was heavily reduced (not shown). Second, while the TC

wind profile is typically dominated by axisymmetric

processes near the core, asymmetries often dominate

farther away from the core. These asymmetries cannot

always be represented by the simple asymmetric model

in the aforementioned text. The combined effect of both

of these factors is likely to underestimate the radial ex-

tent of winds at a particular threshold in each quadrant,

where the magnitude of this bias decreases as onemoves

toward the inner core (i.e., we underestimate r34, and

less so for r50, and even less for r64). This observed bias

could be addressed by adding more degrees of freedom

to the wind model, though this would reduce the sim-

plicity. Using another wind model with more degrees of

freedom, such as the radii-CLIPERwindmodel of Knaff

et al. (2007), may also help to alleviate these issues.

The multiplicative bias is defined by B5�iFi/�iOi,

where B is the multiplicative bias, Fi are the forecasted

probabilities, andOi is the observation (0 or 1). The bias

B is a measure of whether the average forecast has prob-

abilities that are too large (B . 1), or too small (B , 1).

The average probabilities of FHLO-Super, shown by

Fig. 10, are generally too small for the 34- and 50-kt

thresholds, and reasonably unbiased for the 64-kt

threshold. The underlying reason for B, 1 at the 34- and

50-kt thresholds is likely the same reason for the bias in the

reliability diagrams; namely, that r34 and r50 are being

underestimated in each quadrant. Regardless, the mul-

tiplicative biases at a fixed threshold remain relatively

constant in time. This suggests that reducing the bias in

the wind model could lead to B ’ 1 at all thresholds.

Unfortunately, a large number of grid points across a

basin have zero probability and will evaluate to correct

nulls, which can strongly influence the bias scores. To

remedy this, we use the threat score metric to further

evaluate the probabilistic wind forecasts. Correct nulls

are not used in the threat score. To calculate the threat

score, one defines a threshold probability to determine

a categorical forecast (yes or no) and divides the total

number of correct forecasts by the sum of the total

number of correct forecasts, false positives, and misses.

The threat score has a score from 0 (worst) to 1 (best).

As a baseline, we perform a homogeneous comparison

with NHC’s MCP model. NHC only archives the prob-

abilities accumulated over all storms during a particular

cycle, which is an issue when combined with the fact

that FHLO forecasts only run as far out as the en-

semble tracks. Thus, for any forecast, we must discard

any samples beyond the lead time at which the FHLO

forecast for any existing TC dissipates. This reduces the

number of samples we can use to evaluate FHLO. In the

Atlantic (eastern Pacific), we used 348 (161) cycles at a

lead time of 6 h, to 61 (20) cycles at a lead time of 120 h,

using 0000 and 1200 UTC forecasts from 2015 to 2018.

We also create a superensemble between FHLO-Super

and the MCP model, simply by averaging the wind prob-

abilities of each model, and denote this as FHLO-MCP.

Figure 11 compares the maximum threat scores of

FHLO-Super, the MCP model, and FHLO-MCP. The

threat scores generally maximize at a threshold proba-

bility of ’30% (not shown). In the Atlantic basin, the

MCP model is superior at shorter lead times (’0–2 days),

especially at the 34- and 50-kt thresholds. One reason this

may be is that analyses of the initial position and intensity

can be explicitly taken into account in the official forecast.

FIG. 8. Probability of wind exceeding 64 kt over a 5-day period,

for Hurricane Irma in the Atlantic basin, using 1000 ensemble

members bootstrapped from the ECMWF ensemble. Forecast

initialized at 0000 UTC 5 Sep 2017. The black contour depicts

extent of the observed 64-kt winds.
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On the other hand, FHLO-Super has higher threat scores

at longer lead times (’3 days), regardless of the threshold.

In the eastern Pacific basin, FHLO-Super has larger threat

scores at nearly all lead times and thresholds. These results

suggest that incorporating state-dependent uncertainties

could lead to improvements in long-range, probabilistic,

pointwise wind probability forecasts. Taking into account

the flow-dependent uncertainty will be extremely im-

portant if forecast lead times are extended beyond

5 days. Finally, in the Atlantic basin, the FHLO-MCP

FIG. 9. Reliability diagram for exceedance wind probabilities, cumulative over (top) 24, (middle) 48, and

(bottom) 120 h, for the 34-, 50-, and 64-kt thresholds, using the probabilities derived from FHLO-Super. Basins are

separated into (left)Atlantic and (right) eastern Pacific. Sample set includes only forecasts where the initial position

is south of 308N. Dashed black line indicates perfect reliability. Insets show the sample size, for each threshold, as a

function of forecast probability (days).
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superensemble has better threat scores compared to

both FHLO-Super and the MCP model, at all lead

times and thresholds. While the sample size of the

homogeneous comparison between FHLO-Super and

the MCP model may be a bit limited, this provides

more evidence that combining multiple models can

lead to superior forecasts.

As mentioned previously, ensemble models have the

tendency to possess negative biases in the intensity of a

TC. This may lead to premature dissipation of a TC,

resulting in smaller threat scores from forecast misses.

We expect that as the ability to resolve TCs in ensemble

models increases, the threat scores associated with the

FHLO-based ensembles will also increase. Regardless,

these results suggest that there is much value in incor-

porating state-dependent uncertainty in TC forecasts.

5. Conclusions

In this study, we developed FHLO, a probabilistic,

large-ensemble [O(1000) members], TC prediction frame-

work that estimates forecast uncertainty by leveraging

the internal variability of the large-scale environment

simulated by a global NWP ensemble. We described a

FIG. 10. Multiplicative bias for the FHLO-Super cumulative exceedance wind probabilities, separated

into the 34-, 50-, and 64-kt thresholds, and as a function of the time since initialization. Basins are separated

into (left) Atlantic and (right) eastern Pacific. Sample set includes only forecasts where the initial position is

south of 308N.

FIG. 11. The maximum threat scores for the FHLO-Super (dot–dashed), MCP (dashed), and FHLO-MCP (solid)

cumulative exceedance wind probabilities, separated into the 34-, 50-, and 64-kt thresholds, and as a function

of the time since initialization. Basins are separated into (left) Atlantic and (right) eastern Pacific. Sample set

includes only forecasts where the initial position is south of 308N. Insets show the threat score denominator

(hits1misses1 false alarms) for each threshold, as a function of time since initialization (days), for samples used

to evaluate FHLO-MCP.
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method to generate synthetic tracks that are statistically

similar to those of an ensemble NWP model. We eval-

uated the intensity forecasts of the simulated TC along

each track using the FAST intensity model, and we then

used a physically based wind model to estimate the

full wind field. We evaluated the model using four

years (2015–18) of reforecasts in the Atlantic and eastern

Pacific basins.

We show that the FHLO-based large-ensemble in-

tensity forecasts perform comparably with HWRF, an

advanced NWPmodel. We also evaluate the probability

of exceedance for the 34-, 50-, and 64-kt wind speed

thresholds using reliability curves, multiplicative bias

curves, and threat scores. The results suggest that,

notwithstanding some slight biases at low wind speed

thresholds, the FHLO-based wind forecasts are skillful

and reliable. Pointwise wind forecasts using the FHLO

framework are particularly skillful at lead times longer

than 3 days, and a combination of FHLO-Super and

NHC’s MCP model was shown to have the highest

threat scores across all lead times in the Atlantic. These

results suggest that it will be important to better char-

acterize the state-dependent uncertainty to continue to

improve our long-range forecast skill.

Probabilistic wind speed forecasts combine the un-

certainty in both the track and intensity and provide

uncertainty quantification of wind speeds at fixed points.

As compared to traditional forecast quantities such

as the exact storm center or the maximum wind speed

anywhere in the storm, pointwise wind speeds are the

more relevant TC hazard metric for assessing wind im-

pacts. The uncertainty of wind speeds at a point could also

be translated to location-specific vulnerabilities, as is the

goal of the Hurricane Risk Calculator (Vigh et al. 2020).

Thus, while the traditional track-intensity dichotomy

is useful for evaluating and improving our models, it is

not the most useful and pertinent metric to the public.

It is also important to stress that large ensembles

[O(1000) ensemble members] are necessary to provide

accurate forecasts of pointwise wind speed probability

distributions. This is one of the key advantages of the

large-ensemble framework. Furthermore, unlike themodel

described in DeMaria et al. (2009), the FHLO framework

quantifies forecast uncertainty by incorporating the in-

ternal variability in the large-scale environment. This is

achieved by including uncertainty in the TC’s track,

uncertainty in the dynamic and thermodynamic envi-

ronments, and uncertainty in the initial conditions. The

synthetic tracks of the model are generated by sampling

from the dispersion among TC tracks of an ensemble

NWP model. The dynamic and thermodynamic fields

of the ensemble NWP system are also used to generate

realistic perturbations to TC-relevant environmental

quantities, such as the saturation entropy deficit and

vertical wind shear. Initial condition uncertainty is ac-

counted for by incorporating stochastic perturbations

to the initial intensity and inner-core moisture.

There is also uncertainty in the observations that are

used to evaluate the model. While we evaluate the wind

speed probabilities by assuming that all points within the

estimated maximum radial extent of a particular wind

speed threshold, this may likely not be the case. A better

method to evaluate wind speed probabilities is to only

use wind observations over land, which are arguably

more objective than best track estimates of intensity.

Undertaking such an evaluation could be an area of

future work.

It is worth discussing the various sources of error and

limitations of the FHLO framework. First, while we

provide evidence that FAST can reasonably model and

forecast TCs, the FAST equations are still an imperfect

and idealized representation of the evolution of the in-

tensity of a TC. We expect the intensity module to work

best for axisymmetric, surface-flux-driven, mature TCs,

and thus less so for tropical disturbances or cyclones that

are undergoing extratropical transition. A statistical bias

correction could be applied to the intensity component

for weak disturbances in light of this issue. Furthermore,

in the FAST framework, we consider midlevel ventila-

tion as the only process that dries out the inner core of

a TC. The eddy-entropy flux into the eyewall is then

approximated to vary linearly with the product of the

environmental saturation entropy deficit and the vertical

wind shear (Tang and Emanuel 2012). Any departures

from this approximation will affect the intensity model.

Uncertainty and error can also arise from the methods

developed to calculate environmental quantities. The

definition of vertical wind shear that is relevant to the

TC is problematic, since errors can be introduced through

r*, as well as the vertical levels by which to calculate

shear. In this study, we fixed r*5 400 km and used the

250–850-hPa vertical wind shear. These are perhaps not

the best approximations, and it may be the case that the

‘‘optimal’’ r* and vertical levels by which to calculate

vertical wind shear can vary from storm to storm.

Since TCs are primarily driven by thermodynamic

disequilibrium between the sea surface and boundary

layer air (Emanuel 1986), accurate observations of the

ocean are important to properly calculate environmen-

tal quantities, such as the potential intensity. For this

study, errors in the estimation of these quantities could

have been introduced with the smoothing operators,

which were necessary to remove the TC’s influence on

the thermodynamic and dynamic fields. Furthermore,

we parameterize ocean mixing from upwelling by using

climatological mixed layer depth and sub–mixed layer
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thermal stratification, which effectively smooths out any

high-frequency variability in the ocean. This could lead

to large errors in intensity forecasts (Emanuel et al.

2004). Future work will incorporate information from a

real-time ocean model.

FHLO can also be used to forecast the probability of

rapid intensification (RI). While a full evaluation of the

skillfulness of the FHLO-based ensemble forecasts to

predict RI is left for future work, preliminary evaluation

of probabilistic rapid intensification forecasts, regardless

of the intensity of the storm, shows some promise (not

shown). The evaluation results of the track and intensity

forecasts also suggest that combiningmanymore ensemble

models, such as the Met Office and Japan Meteorological

Agency ensemble systems, could lead to more skillful

forecasts, as suggested by Yamaguchi et al. (2012) and

Titley et al. (2020). In addition, while we only used one

model to predict TC intensity in this study, using a

variety of intensity models to generate intensity fore-

casts may improve the overall model. The only restric-

tion is that the intensity model must be computationally

inexpensive. This principle applies equally to the wind

field model.

Finally, it is important to note that the skill of the

FHLO-based ensemble is derived from the accuracy of

the ensemble NWP system. While it is clear that errors

in representing the environmental fields will signifi-

cantly affect the intensity component, errors in repre-

senting the TC in the NWP model itself can also affect

the FHLO-based ensemble. This can happen when a TC

dissipates too early in the ensemble prediction model,

such that the track model will generate tracks that also

dissipate too early. Though the skill of FHLO is signifi-

cantly coupled to the quality of the ensemble system, it

is likely that the skill of FHLO will progress along with

advancements in ensembleNWPmodels. This is arguably

the most intriguing aspect of FHLO: it can be viewed as a

framework for bootstrapping an ensemble NWP model.
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APPENDIX

Model Setup Details

a. Inversion on a low-resolution grid

In this study, we remove winds associated with the

TC by performing ‘‘vortex surgery’’ on both the ERA5

analysis fields and the forecast ensemble fields, as in

Davis et al. (2008). While the analysis fields can be ob-

tained at high grid resolution, the grid resolution (0.58)
of ensemble numerical weather prediction models is

inadequate to properly resolve the vorticity maxima of a

TC. One way around this is to interpolate between grid

points. However, interpolation schemes must always

assume some structure about the field (i.e., linear, cubic,

etc.). Using spherical harmonics, we can extend the

number of basis functions to an arbitrary higher order by

assuming that the power spectrum obeys a well-defined

power scaling law. Defining L as the truncation order of

the original field,L0 as the truncation order of the higher

resolution field, S(l0) as the desired power at degree l0,
and n as a random coefficient with unit variance, then,

the superresoluted field f is

f (u,f)5�
L

l50
�
l

m52l

f ml Ym
l (u,f)

1 �
L
0

l05l11

�
l
0

m052l0

ffiffiffiffiffiffiffiffiffi
S(l0)

q
n

	 

Ym0

l0 (u,f),

where S is determined from the power spectrum at the

extended spherical harmonics. For simplicity, we use an

exponentially decaying fit to the power spectrum and

use the fit to extend to higher order of harmonics. Note

that this smooth interpolation can also be performed

without assuming any structure about the power spec-

trum, as long as the original resolution is high enough

such that the amplitudes of the higher-order spherical

harmonics are sufficiently small. In fact, we can even set

the power of the higher-order spherical harmonics to

zero with relatively little consequence on the resulting

environmental wind fields.

b. Perturbations to observed intensity

To generate perturbations to the observed intensity,

we model the intensity, V(t), as a Gaussian process

with the time-varying observations as the mean and a

constant covariance kernel:

OCTOBER 2020 L I N ET AL . 1729

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/35/5/1713/4986082/w

afd190255.pdf by guest on 05 Septem
ber 2020



C
V
(t
1
, t

2
)5s2

V exp(2jt
1
2 t

2
j=T) ,

where t1 and t2 are discrete time points in the observed

history, T5 1 day, and s2 is the variance that represents

the uncertainty associated with the observations. We

write the Karhunen–Loeve expansion of the intensity

as V(t)5mV(t)1�n

i51

ffiffiffiffi
li

p
ciui, where n is the total sto-

chastic dimension, ui is a standard normal random var-

iable, and li and ci are the ordered eigenvalues and

eigenvectors with respect to the covariance kernel CV.

We only consider fluctuations of the intensity on time

scales of the observations (every 6 h), such that we take

n5 10 to remove any high-frequency variability. Finally,

we take s2
y as a piecewise constant function:

s2(y)5

�
5, if y, 32m s21

10, if y$ 33m s21
,

where y is the observed intensity. These values of s2(y)

were chosen as simple approximations to the uncertainty

distributions shown in Landsea and Franklin (2013).
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