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1. Introduction 
 

Aircraft measurements of tropical cyclones that commenced during World War II 
allowed scientists of that era to paint the first reasonably detailed picture of the wind and 
thermal structure of tropical cyclones. This led to the first attempts to quantify the energy 
cycle of these storms and to understand the physical control of their structure. In this 
contribution, I review the history of research on the energy cycle and structure of tropical 
cyclones and offer a revised interpretation of their structure.  
 
 

2. Energetics 
 

The first reasonably accurate description of the energy cycle of tropical cyclones 
appeared in a paper by Herbert Riehl (1950). To the best of this author’s knowledge, this 
is the first paper in which it is explicitly recognized that the energy source of hurricanes 
arises from the in situ evaporation of ocean water1. By the next year, another German 
scientist, Ernst Kleinschmidt, could take it for granted that “the heat removed from the 
sea by the storm is the basic energy source of the typhoon” (Kleinschmidt, 1951).  
Kleinschmidt also showed that thermal wind balance in a hurricane-like vortex, coupled 
with assumed moist adiabatic lapse rates on angular momentum surfaces, implies a 
particular shape of such surfaces. He assumed that a specified fraction, q , of the 
azimuthal velocity that would obtain if angular momentum were conserved in the inflow, 
is left by the time the air reaches the eyewall, and derived an expression for the 
maximum wind speed: 
 

 
2

2
max 2

2
1

q
v E

q



 (1) 

 
where E  is the potential energy found from a tephigram, assuming that air ascending in 
the eyewall has acquired some additional enthalpy from the ocean. Kleinschmidt did not 
provide a specific method for estimating this enthalpy increase, and (1) is sensitive to the 
arbitrary value of q  specified.  
 

In his widely circulated textbook, now regarded as a classic, Riehl (1954) 
described hurricanes as heat engines and showed that for air ascending in the eyewall 
to be appreciably warmer than that of the distant environment, a condition for conversion 
of potential to kinetic energy, the inflowing air had to acquire enthalpy from the 
underlying surface.   

                                                      
1 Byers (1944) recognized that the observation of nearly constant temperature following air 
flowing down the pressure gradient near the surface implies a sensible heat source from the 
ocean. The existence of isothermal inflow has been called into question by more recent 
observations. 



 
 The work of Riehl and his colleagues, most notably Joanne Malkus, culminated 
in the publication of two papers in the early 1960’s: Malkus and Riehl (1960) and Riehl 
(1963). The first of these once again emphasized that the horizontal temperature 
gradients that sustain tropical cyclones arise from heat transfer from the ocean. Making 
use of the observation that the horizontal pressure gradient is very weak at the top of the 
storm, that temperature lapse rates are very nearly moist adiabatic in the eyewall, and 
that the temperature of lifted parcels is a function of their boundary layer equivalent 
potential temperature, Malkus and Riehl (1960) used the hydrostatic relation to calculate 
a relationship between the surface pressure fall from the environment to the inner edge 
of the eyewall: 
 
 2.5s ebp   , (2) 

 
where sp  is the surface pressure drop in millibars, and eb  is the increase in 

equivalent potential temperature, in Kelvins. In deriving this, the horizontal isobaric 
height gradient was assumed to vanish at 100 mb. This is a simple quantitative 
relationship showing explicitly the relationship between a measure of hurricane intensity 
and the increase in boundary layer entropy necessarily arising from sea-air enthalpy 
transfer. Riehl (1963) showed that (2) is well verified in observations of actual storms 
(with a best-fit coefficient of 2.56) and extended the Malkus and Riehl  work in several 
ways. First, he made use of an argument made by Riehl and Malkus (1961) that outside 
the eyewall, where latent heat release is weak, conservation of potential vorticity 
integrated over a volume capped by an isentropic surface above the boundary layer 
leads to the conclusion that the curl of the surface stress must vanish, which for an 
axisymmetric vortex gives 
 
  
 zr constant  , (3) 

 
where z  is the azimuthal component of the surface stress. (We will test this proposition 

in section 3.) Given that the stress varies nearly as the square of the wind speed, (3)
implies that 
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where v  is the azimuthal wind speed. Using (4) and assuming cyclostrophic balance 

gives an approximate expression for the pressure drop from some outer radius, or , to 

the radius of maximum azimuthal winds, ir : 
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where maxv  is the maximum azimuthal wind speed and   is a mean air density in the 

boundary layer. Eliminating sp  between (5) and (2), and using an estimate of   gives 
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where maxv  is in 1m s .  

 
 In the next step, Riehl estimated eb  from conservation of entropy and angular 

momentum in the inflow. I will slightly abbreviate and generalize his derivation here. 
Assuming that both entropy ( e ) and angular momentum (M) are vertically uniform in the 

boundary layer, integration of the conservation equations for entropy and angular 
momentum through the depth of the boundary layer gives 
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where  is the mass streamfunction of the flow in the r z  plane evaluated at the top of 

the boundary layer, kC  is an enthalpy transfer coefficient, es is the saturation equivalent 

potential temperature of the sea surface, V  is a surface wind speed, and M is the 

absolute angular momentum per unit mass, given by 
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Eliminating  between (7) and (8) gives 
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      Recall from (3) that zr   is assumed constant. Also assuming that V v , we use 

(4) to express v  as 
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where mr  is the radius of maximum winds. Using (9) for M, we can integrate (10) from mr  

to some outer radius, hr , to get 

 

 
   3 31

2 2 2
max max

4
ln

2 3
k es e h

eb m m h m
z m

C r
v v r fr r r

r r

 



  

  
 

  (11) 



 

where we have assumed that  es e   does not vary with radius. Now using 
2
maxz m Dr r C v  , where DC  is the drag coefficient, we can write (11) as 
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        Noting that, from (3) 2 2
maxm h hr v r v , where hv  is the wind speed at radius hr , making 

the approximation that m hr r , and substituting (12) into (6) gives 
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which is equation (27) from Riehl (1963), except that Riehl assumed that D kC C .  

Note that this, together with 2 2
maxm h hr v r v  (from (3)), gives a transcendental equation for 

the maximum wind speed as a function of the degree of thermodynamic disequilibrium 
between the ocean and atmosphere, the Coriolis parameter, and the wind velocity at 
some specified radius. (Riehl goes on to make what in my view is a somewhat circular 
argument that there is another dynamical limit on the relationship between maxv  and mr  

which, together with (13), determines the radius of maximum wind and an outer radius at 
the same time.) We shall show later that Riehl comes very close, in (13), to an energetic 
limit on hurricane intensity2.   

                                                      
2 Malkus and Riehl (1960)  came even closer. Their equation (33) invokes conservation of 

e along a boundary layer streamline, yielding 
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where *
es  is the saturation e  of the sea surface, ea  is the e  of the ambient boundary layer 

air, h  is the boundary layer depth, and the differentiation is along a streamline. Note that I have 
changed the notation for consistency, and that Malkus and Riehl unintentionally omitted the factor 
h . Combining this with (2) gives 
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This is essentially the unnumbered equation after (33) in Malkus and Riehl. They also wrote down 
an expression (their equation 35) for conservation of energy along a streamline in the boundary 
layer: 

3

D

p v
v C

s h


 


.                        (b) 

Had they eliminated pressure between (a) and (b), they would have obtained the correct 
expression for maximum wind speed, our (21), albeit with fixed thermodynamic efficiency. 
Instead, they combined (b) with a balance equation for sensible heat along a boundary layer 
streamline, to obtain a peculiar relationship between maximum wind and air-sea temperature 
difference (their equation 36).  



 
 Several years earlier, Miller (1958)  developed a theory for the minimum central 
pressure in hurricanes. Miller also starts by assuming a moist adiabatic eyewall, but 
explicitly ignored any increase in entropy from the outer region into the eyewall, opting 
instead to assume that the eyewall air starts out at sea surface temperature and with a 
relative humidity of 85%.  Miller then estimated a vertical profile of temperature in the 
eye itself by assuming dry adiabatic descent modified by mixing with the eyewall air, 
along the line of reasoning explored by Malkus (1958). Once the eye temperature profile 
is constructed, the central surface pressure is calculated hydrostatically,  assuming a 
level of zero horizontal pressure gradient at the standard pressure level nearest the level 
of neutral buoyancy for undilute pseudo-adiabatic ascent in the environment. The 
calculated central pressures were in good agreement with the minimum pressures 
recorded in a limited sample of intense hurricanes.  
 
 It is important to note here that Miller’s work departs in a significant way from the 
line of reasoning adopted by Riehl and Malkus. The latter had emphasized the crucial 
importance of enthalpy transfer from the ocean, while Miller regarded the hurricane as 
resulting from the release of conditional instability of the ambient atmosphere, requiring 
no enhanced air-sea enthalpy flux. He quotes Byers (1944) statement that compared the 
hurricane to “one huge parcel of ascending air” and states in his opening sentence that 
“the principal source of energy of the tropical storm is the release of the latent heat of 
condensation”, a statement rather precisely analogous to a claim that elevators are 
driven upward by the downward force on the counterweights: both statements are true 
but miss the point. In hindsight, Miller’s estimate of the maximum intensity of hurricanes 
is energetically inconsistent. As the eyewall entropy is no larger than that of its 
environment, there can be no conversion of potential to kinetic energy by the overturning 
circulation of the storm; at the same time, the eye itself contains descending air with high 
temperature, a process that converts kinetic to potential energy. Thus Miller’s energy 
cycle in the net absorbs rather than produces kinetic energy and thus cannot maintain 
the system against dissipation. In an important sense, Miller’s analysis presaged the 
CISK thinking that became the dominant paradigm for tropical cyclone physics after the 
publication of Charney and Eliassen (1964). This thinking emphasizes the interaction 
between cumulus convection and the cyclone circulation rather than enthalpy flow from 
the ocean.  
 

Meanwhile, the development of new observational tools and techniques 
continued apace. By the late 1960s, the axisymmetric structure of mature hurricanes had 
been well determined by aircraft and dropsonde observations. It had been known for 
some time that hurricanes are warm core vortices; the aircraft data showed that much of 
the horizontal temperature gradient is concentrated in the eye and eyewall and that in 
the upper troposphere, the eye temperature can be 15 K warmer than their environment 
at the same pressure. Analyses of the entropy distribution (Figure 1) tended to confirm 
the Riehl-Kleinschmidt-Malkus view of the energy cycle, with a pronounced inward 
increase of equivalent potential temperature near the storm’s eyewall. These 
observations made it clear that there is a strong surface entropy source under the 
eyewall. 
 
 At about the same time, Ooyama (1969) published the results of the first successful 
numerical simulation of a tropical cyclone, showing among other things that 
intensification of such storms indeed relies crucially on surface enthalpy fluxes. A 
decade later, Rosenthal published the results of a numerical simulation in which he had 



accidentally omitted the cumulus parameterization; the simulated storm had no difficulty 
intensifying into a mature tropical cyclone (Rosenthal, 1978). Influenced by the 
Rosenthal and Ooyama results, Douglas Lilly started work on a steady state model 
based on conservation of certain key quantities along streamlines emanating from the 
boundary layer. As he was not satisfied with certain properties of his model, Lilly put this 
work aside until 1984 when he learned of research on the same subject being carried 
out by the author and Richard Rotunno. The three of us conducted a lively 
correspondence over the following year, with the intention of publishing our results in two 
or three papers. Although we wrote two conference preprint papers together (Emanuel et 
al., 1985; Lilly and Emanuel, 1985) and my own work was written up (Emanuel, 1986), 
Lilly never formally published his own work on the steady-state hurricane model. As 
there are some interesting features of this work and because it departs in certain 
substantial ways from Emanuel (1986), it is worth reviewing here.  
 
 

 
Figure 1:  Equivalent potential temperature (K) as a function of pressure and radius from 
the center of Hurricane Inez on 28 September, 1966, based on aircraft data at 500 m, 750 
mb, 650 mb, 500 mb and 180 mb. Contours are at intervals of 2 K with a minimum value of 
336 K (light blue) and a maximum value of 376 K (yellow). After Hawkins and Imbembo 
(1976).  

 



 Assuming a steady, circularly symmetric vortex with reversible adiabatic flow 
above the boundary layer, Lilly first derived the differential relationship 
 

 
2

1 1
,

2

M
Tds dM d d E fM

r r
 


      

 (14) 

 
where M  is the angular momentum per unit mass, s  is the specific (moist) entropy,   

is the azimuthal component of the vorticity,   is the mass streamfunction, f  is the 
Coriolis parameter (assumed constant over the diameter of the storm), r  is the radius 
from the storm center,   is the air density and E  is the energy content per unit mass, 
defined 
 

 21
| | ,

2 p vE C T L q gz   V  (15) 

 
where V  is the three-dimensional velocity vector, pC  is the heat capacity at constant 

pressure, vL  is the latent heat of vaporization, q  is the specific humidity, g  is the 

acceleration of gravity and z  is the altitude.  
 

 
 

Figure 2: Showing the path of integration of (14) around a closed circuit consisting 
of a pair of adjacent streamlines emanating from a boundary layer of depth h.  



 
Lilly pointed out that the last term on the left side of (14) vanishes if hydrostatic 

and gradient wind balance are assumed. Ignoring that term and integrating around a 
closed circuit consisting of adjacent streamlines, as illustrated in Figure 2, gives 
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where br  is the radius of at the top of the boundary layer, or  is the radius that the 

streamlines approach far from the storm, and bT  and oT  are the absolute temperatures 

at the top of the boundary layer and near the top of the storm, respectively.  
 

The expression (16) was derived on quite different grounds by Kleinschmidt 
(1951) and later by Emanuel (1986). They assumed hydrostatic and gradient wind 
balance from the start, and simply integrated the thermal wind equation upward along 
angular momentum surfaces assuming that the saturation entropy, *s , is constant on 
angular momentum surfaces. Kleinschmidt argued, as did Lilly, that air ascending in the 
core would be saturated and would preserve its values of both entropy and angular 
momentum as it ascended; thus entropy would be invariant along angular momentum 
surfaces. I used a different (and I think more general) argument:  Even outside the core, 
where the air is not saturated on the vortex scale, slantwise moist convection should 
adjust the saturation entropy to be constant on angular momentum surfaces; this is just 
the condition for neutrality to slantwise convection. This condition of slantwise neutrality 
has been well verified in simulations using a nonhydrostatic model (Rotunno and 
Emanuel, 1987). Thus a more general form of (16) is 
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We note here that Lilly’s approach has the advantage that neither hydrostatic nor 

gradient wind balance has to be assumed; the approach of Kleinschmidt and Emanuel 
has the advantage that there is no need to invoke energy conservation or to assume that 
streamlines are along angular momentum surfaces. Thus the approach based on 
thermal wind balance is equally applicable to a nonsteady vortex, as long as the 
evolution of the vortex is slow enough that thermal wind balance still applies. I argue that 
in contrast to (16), the relation (17) is valid everywhere that moist convection occurs; in a 
mature hurricane, this is most everywhere, except in the eye. Shutts (1981) also derived 
an expression similar to (16), except that he assumed that dry entropy (potential 
temperature) rather than moist entropy or saturation moist entropy is invariant on 
angular momentum surfaces.  
 
 The relation (17) strongly constrains the structure of the hurricane vortex, a fact 
we shall exploit in the next section. When coupled with relations governing sources and 
sinks of entropy and angular momentum, this relation also places strong constraints on 
the maximum wind speed of the hurricane. To demonstrate this, we first put (16) in a 
form that makes explicit its reliance on entropy and angular momentum sources. 
Assuming that the radii or  to which angular momentum surfaces flair near the top of the 



storm are very much larger than the radii ( br ) that they have at the top of the boundary 

layer, we can express (16) as  
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in which it is understood that we shall be evaluating the sources of entropy and angular 
momentum at the top of the boundary layer. Lilly took the top of the boundary layer to be 
the top of the shallow convective layer, near the level where entropy (equivalent 
potential temperature) reaches a minimum value. In practice, this is 3-4 km above the 
surface. I prefer to take the top of the boundary layer to be the top of the well mixed, 
subcloud layer, around 500 m above the surface (Emanuel, 1986). In either case, the 
equations for the total derivatives of entropy and angular momentum, integrated through 
a boundary layer of depth h , may be written 
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where s  and M  are the entropy and angular momentum averaged through the depth of 
the boundary layer,  | |V  is a near-surface wind speed, V  is the azimuthal velocity of air 

near the surface, kC  and DC  are surface exchange coefficients for enthalpy and 

momentum, respectively, *
sk  and k  are the specific enthalpies of air at saturation at sea 

surface temperature and pressure, and boundary layer air, respectively, and bF  is the 

enthalpy flux through the top of the boundary layer. We have used the classical bulk 
formulae for the surface fluxes of enthalpy and momentum, and assumed that there is 
little turbulent flux of angular momentum through the top of the boundary layer, owing to 
the very weak vertical gradients of angular momentum found at lower levels in 
hurricanes. The first term on the right side of (19) is the surface enthalpy flux; the second 
term is the entropy source owing to dissipative heating, and the final term is the entropy 
source (usually a sink) owing to enthalpy fluxes through the top of the boundary layer. 
Both Lilly and Emanuel neglected to include the dissipative heating term, which Bister 
and Emanuel (1998) later found to be of first order importance.  
 
  Lilly’s approach, taking the boundary layer depth to be that of the shallow 
cumulus layer, has the advantage that it is plausible to assume that the enthalpy flux 
through the top of the boundary layer, bF , vanishes. On the other hand, since moist 

entropy itself varies significantly with altitude within this layer, the relationship between 
s  and the saturation entropy at the top of the boundary layer is problematic.  In my 
approach, taking the boundary layer to be the well-mixed subcloud layer, the entropy 
should be well mixed in the vertical, while convective neutrality would argue that s  
should be nearly equal to the saturation entropy above the top of the boundary layer; on 



the other hand, bF  will usually be significant. In the eyewall of a well-developed storm, 

however,  both the vertical entropy gradient in the boundary layer and bF  should be very 

small in the eyewall. Thus, in the eyewall, we may assume that 0bF   and s s . Also 

approximating M  by rV  in this region and taking | | VV allows one to derive, by 
substituting (19) and (20) into (18), the relation 
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in which we have assumed that the wind speed so computed represents an upper 
bound, given that we have neglected enthalpy fluxes through the top of the boundary 
layer, which are almost always negative. The expression derived by both Lilly and 
Emanuel (1986) differs from (21) in that sT  rather than oT  appears in the denominator, 

as a consequence of neglecting dissipative heating. I interpreted (21) in terms of a 
Carnot cycle, in which enthalpy is added to the system at the high temperature of the 
ocean and removed at the low temperature of the storm’s outflow near the tropopause.  
 
 Equation (21) is in many respects similar to (13) from Riehl (1963), with the same 
dependence on the ratio of the exchange coefficients and the ambient thermodynamic 
disequilibrium between the ocean and atmosphere (though here expressed in terms of 
enthalpy rather than entropy). But there are two differences: unlike (13), (21) has no 
explicit dependence on outer radius, radius of maximum wind, or wind speed at some 
particular radius; and Riehl’s factor of 100 is replaced by a modified thermodynamic 
efficiency. Riehl’s assumption that parcels become neutrally buoyant at 100 mb has 
been replaced by an explicit dependence on outflow temperature, which depends on the 
level of neutral buoyancy of air ascending in the eyewall. Also, Riehl’s use of a power 
law dependence of wind on radius has been replaced by the assumption of thermal wind 
balance and slantwise neutrality (or, equivalently, of an assumption of energy 
equilibrium); this gets rid of the factor in brackets in (13). 
 
 The relation (21) suggests a strong sensitivity of hurricane intensity to those 
boundary layer processes that determine the exchange of enthalpy and momentum with 

the ocean, and ocean temperature near the eyewall, which can strongly affect *
sk k .  

It is sometimes remarked that (21) is especially sensitive to assumptions about the value 
of the enthalpy ( k ) under the eyewall (Holland, 1997). But k  is not a free parameter. 
According to the subcloud layer equilibrium hypothesis (Raymond, 1995), air in the 
boundary layer is very nearly neutral to adiabatic displacement to a position just above 

the top of the boundary layer.  This may be expressed as *
bk h , where *

zbh  is the 

saturated moist static energy just above the top of the boundary layer. But *
zbh  is not 

arbitrary: through the thermal wind relation (17) it has a specific relationship to the 
unperturbed saturation moist static energy of the environment. Since angular momentum 
increases outward, the saturation entropy (and the saturation moist static energy) must 

increase inward, so that *
zbh  (and therefore k ) is greater than the value it has in the 

unperturbed environment. In (21), this offsets the inward increase in *
sk  that arises from 

decreasing surface pressure. These effects are quantified in the Appendix. Emanuel 



(1986, 1995) simplified the calculation of k  at the radius of maximum winds by 
assuming that the boundary layer relative humidity is constant outside the radius of 
maximum winds.  
 
 The predictions of (21) are in good accord with numerical experiments, beginning 
with those by Ooyama (1969) and Rosenthal (1971) and continuing with many others in 
the 1990s, in which the exchange coefficients are simply specified. Unfortunately, little is 
known about how these coefficients behave at high wind speeds in nature. As is 
apparent in Figure 1, most of the entropy increase in the inflow occurs very near the 
eyewall; it is here that hurricanes are sensitive to the exchange coefficients. (Note that 
for this reason, the centers of hurricanes can approach very near to land before their 
intensity begins to diminish.) Measurements at low to moderate wind speeds suggest 
that the drag coefficient increases with wind speed, because of increased surface 
roughness, but the enthalpy exchange coefficient remains approximately constant 
(Large and Pond, 1982); when extrapolated to hurricane wind speeds, this would yield a 

ratio /k DC C  too small to explain the observed intensity of hurricanes (Emanuel, 1995). 

This suggests that other physical processes must come into play to enhance the 
enthalpy exchange and/or diminish drag. Andreas and Emanuel, (1999) suggested that 
the relevant mechanism is re-entrant sea spray, which transfers significant amounts of 
enthalpy to the air. Recent estimates of the exchange coefficients from wind-wave tank 
measurements (Alamaro et al., 2003), from measurements of the ocean current 
response to tropical cyclones (Shay, 1999) and from wind profiles measured using 
dropwindsondes (Powell et al., 2003) suggests that their ratio in high winds is not too 
different from unity. A field experiment that is scheduled to take place in the summer of 
2003 will also attempt to make measurements that could help understand the behavior 
of surface exchanges at extreme wind speeds. 
 
 The calculation of oT  is straightforward in principle. Since tropical cyclones are 

subcritical vortices - internal waves can propagate inward against the outflow at upper 
levels  -  the outflow temperature represents that environmental temperature to which 
the entropy surface arising at the radius of maximum winds asymptotes at large radius. It 
can be calculated given an environmental temperature sounding. The saturation entropy 

of the ocean surface, *
sk , is a function of surface pressure as well as ocean temperature 

and must be calculated iteratively, using a second relationship between pressure and 
wind speed. This is discussed in Emanuel (1986) and Emanuel (1995). Finally, the 
actual enthalpy of the boundary layer air, k , must be estimated using a boundary layer 
model or by making an assumption about its radial distribution outside the radius of 
maximum winds.  
 
 In spite of these limitations, calculations of the maximum wind speed made using 
(21) are in good agreement with those attained in numerical simulations, reviewed 
above, in which the ocean temperature is fixed and for which, of course, the exchange 
coefficients are known since they are specified. Real hurricanes are never observed to 
exceed the limit given by (21) with / 1k DC C  , but the vast majority fall well short of this 

limit (Emanuel, 2000). This is probably due in part to the fact that the ocean temperature 
cools as hurricane pass over, owing to strong upward mixing of cold water, but also to 
disruption of the energy cycle by atmospheric interactions which serve, among other 
things, to import low entropy air into the storm’s core.  
 



   
 The sensitivity of (21) to local perturbations of sea surface temperature can be 
seen by noting that under average tropical conditions, a local decrease of sea surface 

temperature of only 2.5o C suffices to bring *
sk k  to zero. (But note that large-scale 

gradients of sea surface temperature are associated with similar gradients in k , so that 
*

sk k may remain approximately constant over large areas of undisturbed ocean.) This 

would suggest that the observed ocean cooling of order 1o C under the storm core could 
have a significant feedback on hurricane intensity. But the first simulation of a hurricane 
using an coupled ocean-atmosphere model, by Chang and Anthes (1979), showed little 
effect of the ocean feedback on storm intensity, leading to a period of roughly two 
decades during which ocean feedback was regarded as unimportant, except perhaps for 
storms crossing the wakes of previous storms. (In hindsight, the model used by Chang 
and Anthes had too coarse a resolution and was integrated for too short a period to see 
appreciable effects from ocean feedback.) Interest in ocean feedback was renewed after 
publication of Sutyrin and Khain (1984), Gallacher et al. (1989), Khain and Ginis (1991), 
Bender et al. (1993), and Schade and Emanuel (1999), all of whom used advanced 
coupled models to demonstrate that ocean feedback has a first-order effect on hurricane 
intensity. Emanuel (1999) demonstrated that the intensity of many hurricanes could be 
accurately predicted using even a very simple atmospheric model coupled to an 
essentially one-dimensional ocean model (Schade, 1997), as long as storms remain 
unmolested by adverse atmospheric influences such as environmental wind shear, 
which has been shown to be a statistically significant predictor of intensity change. 
 
 
        3. Physical constraints on hurricane structure 
               
 The derivation of (21) relies on the assumptions that the boundary layer entropy 
is equal to the saturation entropy above the boundary layer (i.e. convective neutrality), 
that the angular momentum is dominated by rV  and that we can neglect the turbulent 
flux of enthalpy through the top of the boundary layer at the radius of maximum winds. If 
these assumptions truly applied everywhere, then (21) would be valid everywhere; 
clearly this is not the case as the right side of (21) has only a very weak dependence on 
radius. Here we argue that the main features that determine the radial structure of the 
hurricane vortex are radial variations in the enthalpy flux through the top of the boundary 
layer ( bF ), and, in the far outer region, the decoupling of the boundary layer from the 

free troposphere in regions that are stable to convection.  
 
 Observations (e.g. Powell, 1990a,b) and numerical simulations (e.g. Rotunno 
and Emanuel, 1987) reveal that the main mechanisms for evacuating enthalpy from the 
boundary layer are low entropy convective downdrafts and turbulent entrainment. In the 
spirit of simplicity, we represent these processes using a simple convective scheme 
based on Raymond’s (1995) boundary layer quasi-equilibrium hypothesis.  This scheme 
is described in detail in Emanuel (1995). As shown in Figure 3, we represent convective 
updraft volume flux by uM , convective downdraft volume flux by dM , clear-air vertical 

velocity by ew , and total vertical velocity by w . For convenience, we define dM  and ew  

to be positive downward. The flux of low enthalpy air into the top of the boundary layer is 
then just 
 



    ,b e d b mF w M h h     (22) 

 
where bh  and mh  are the moist static energies of air in the boundary layer and just 

above the top of the boundary layer, respectively. We have assumed that both 
convective downdrafts and clear-air descent advect the same characteristic value of 
moist static energy into the boundary layer, and that 0ew  , i.e. that the clear air is 

actually sinking.  
 
 At the same time, mass continuity demands that 
 
 ,u d eM M w w    (23) 

 
i.e. that the three components add up to the total vertical velocity. Using (23) in (22) gives 
 

   b u b mF M w h h    . (24) 

 
Using this in the boundary layer entropy equation (19), and expanding the total derivative 
of entropy in angular momentum coordinates: 

 

Figure 3: Partition of vertical motions at the top of the subcloud layer into convective 
updrafts, convective downdrafts, and clear-air subsidence.  
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allows us to write (19) as 
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Finally using (20) for the boundary layer sink of angular momentum in (25) gives 
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Note that we have assumed here that both entropy and angular momentum are well 
mixed in the vertical within the boundary layer.  

 
We are going to use (26) in two different ways, depending on whether convection 

is present or absent. Where convection is absent, it is assumed that the boundary layer 
entropy is decoupled from the saturation entropy aloft. We can then use (26), with 

0uM  , to calculate the radial distribution of entropy in the steady state. But there is 

little incentive to actually carry out the calculation, since the boundary layer entropy will 
then have no control over the vortex structure as a whole.  

 
Where convection is present, we invoke boundary layer quasi-equilibrium, which 

sets the left side of (26) to zero, and use it as a closure for uM . We also assume that the 

saturation entropy above the boundary layer, *s  is equal to the boundary layer entropy, 
s , when convection is active. Then, with the help of the thermal wind balance (17) and 

once again neglecting 21/ or , we can write the last term of (26) as  
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Approximating /M r  by V , and | |V  also by V , and using this in (26) gives the closure 
for the convective updraft mass flux: 
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 (27) 

Using boundary layer quasi-equilibrium has allowed us to close on the convective 
mass flux, but in the process we have lost the prediction of boundary layer entropy. The 
missing ingredient is the thermodynamic balance above the boundary layer. Along an 
angular momentum surface (also a surface of constant *s  by the assumption of 
slantwise convective neutrality), the temperature (equivalently *s ) is controlled by 
convection and radiation: 
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where d  and m  are the dry and moist adiabatic lapse rates, ds  is the entropy of dry 

air, and radQ  is the radiative heating. We relate the downdraft mass flux to the updraft 

mass flux by  
 
 (1 ) ,d uM M   (29) 

where   is a bulk precipitation efficiency. When it is unity, there is no downdraft, while 
when it is zero the updraft and downdraft mass fluxes are equal. Using this in (28) and 
assuming a steady state gives 
 
 ,rad uw w M    (30) 

 
where 
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Since the tropical troposphere is usually cooling radiatively, radw  is usually positive. It is 

the rate at which air subsides in the troposphere under the influence of radiative cooling. 
In this simple model, we shall just take it to be a constant.  
 
In summary, in nonconvective regions in which (27) gives a zero or negative value for the 
convective updraft mass flux, we have, from (30), that 
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where   is the streamfunction at the top of the boundary layer. But where convection is 
active (i.e. (27) yields a positive convective updraft mass flux), substitution of (27) into 
(30) gives 
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 To close the system, we use the steady-state form of the boundary layer angular 
momentum equation, (20): 
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or equivalently, 
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Thus the closed steady-state system consists of (33) together with either (31) or (32), 
depending on the sign of uM  determined from (27).  

 
 This system of equations is appropriate to the outer region of the storm and to 
the outer part of its eyewall, where we expect a match between the vertical motion in the 
free troposphere an that demanded by Ekman dynamics at the top of the boundary 
layer. However, it is not applicable at the inner edge of the eyewall, where radial 
diffusion is necessary to balance to strong frontogenetical tendencies, or in the eyewall 
where Ekman pumping produces upflow only through a shallow layer, while inward 
turbulent fluxes of angular momentum drive an axial downflow above the boundary layer 
(Emanuel, 1997). Thus we terminate integration of the equations near the radius of 
maximum winds and do not use them to derive a maximum wind speed.  
 
 We next proceed to a simple numerical solution of (33) with either (31) or (32). 
Before doing this, we can absorb most of the parameter dependence of these equations 
into scaling of the dependent and independent variables. We replace the variables as 
follows: 
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where maxv  is defined by (21). With these substitutions, our system becomes 
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with 
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Here the additional nondimensional parameter is defined 
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Although   must vary with radius, since all of its components do, we shall take it to be a 
constant here for simplicity; likewise, we shall neglect radial variations of the 
precipitation efficiency,  . 
 
 The boundary condition for this system is that   vanishes at some outer radius 

or . From (34) V must vanish there as well. Although the system is second order in r , we 

do not apply a second boundary condition since we terminate integration at or outside 
the radius of maximum winds. The control parameters are then  ,  , Qw  and or .  

 
 Before turning to numerical integrations, it is instructive to look at approximate 
analytic solutions in the far outer region, where it will turn out that 0uM  . In that case, 

we can integrate (35) directly, and applying the boundary conditions, we get 
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Substituting this into (34) gives 
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For 1Qw  , the dominant balance of the above gives 
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Away from the outer radius or , this gives the same 
1
2r


 dependence of V  derived by 

(Riehl, 1963) on the somewhat questionable premise that potential vorticity is conserved 
in the outer region.  
 
 Closer in towards the center, but still well outside the radius of maximum winds, 
another approximate solution presents itself. Here we assume that convection is active, 

so that both (34) and (36) apply. We also assume that QV w   but 2 1V  , so that 

(36) may be approximated by 
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while at the same time, the last term in (34) may be neglected (i.e. the relative vorticity is 
much greater than the Coriolis parameter), giving 
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The system comprised of (40) and (41) has the power law solution 
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Realistic solutions are thus obtainable only if  
 

 
1

2 .




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Thus the precipitation efficiency has to be relatively large and/or the relative air-sea 
thermodynamic disequilibrium has to be large. Note that for the parameters used in the 

numerical solution discussed presently, 2
3n  .  

 
 The numerical solution of  (34) - (36) is straightforward. We start at or r  and 

march inward, using a radial step of 0.001. A particular solution for the azimuthal wind is 
shown in Figure 4 and compared to the profile obtained by running the model of Rotunno 
and Emanuel (1987) into a statistical steady state and re-scaling the velocity and radius 
to map into the nondimensional coordinates. The agreement is quite good, especially 
considering the crude approximation of neglecting any radial variations of   and  . The 
longer tail in the Rotunno-Emanuel model is likely owing to the fact that in that model the 
radiative cooling is proportional to the temperature perturbation rather than being a fixed 
constant. Thus the dry descent is weaker and must extend over a broader area to carry 
the same mass flux.  
 
Corresponding solutions for the nondimensional radial and vertical velocities and for the 
cumulus updraft volume flux are shown in Figure 5 and 6. Note that convection is absent 
in the far outer region.  
 
 Having obtained asymptotic solutions for the azimuthal velocity for large and 
small V  (but still well outside the radius of maximum winds), we can attempt to patch 
these together to form a distribution approximately valid for the whole range of radius 
outside the radius of maximum winds. At the same time, we can build in an asymptotic 
limit for the wind profile in the eye, to get a distribution for the whole storm. I have 
attempted to do this while at the same time altering the large r  asymptotic limit to better 
fit the Rotunno and Emanuel numerical solution. The result of this exercise is 
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 (45) 

 
where n  is given by (43), m  is an exponent governing the wind profile in the eye, mV  is 

the maximum wind speed, mr  is the radius of maximum winds, and b  is a weighting 

parameter that governs the transition between the two asymptotic regimes. Note that 
(45) is valid as well using dimensional values of the radius, since all the radii are 
normalized anyway. Also note that unless 0r  is unreasonably small, the absolute angular 

momentum implied by (45) will be a monotonically increasing function of radius.  
 

 

Figure 4: Nondimensional azimuthal velocity as a function of nondimensional radius as a solution of 

the steady-state model, with 1  , 0.8  , 0.1Qw   and 0.25or  . For plotting purposes, we 

let the azimuthal velocity decrease linearly with radius to zero inside the terminal radius of the 
integration. Shown for comparison in red is the quasi-steady velocity profile from a simulation using 
the nonhydrostatic model of Rotunno and Emanuel (1987), scaled to these coordinates.  



 
 

Figure 5: Same as in Figure 4 but showing the nondimensional radial velocity in the 
boundary layer (with positive values inward).  

 

 

Figure 6: Same as in Figure 4 but showing the total vertical velocity (blue) and the 
cumulus updraft volume flux (green).  

 
 



 A solution to (45) taking 174mV m s  and 14mr km  from the Rotunno and 

Emanuel numerical simulation, and using 0.9,n  1.6,m   0.25b   and 0 1200r km  is 

compared to the R&E simulation results in Figure 7. The fit is quite good. Also shown is 
the best fit of Holland’s (1980) wind profile, taking his b  parameter to be 1.9. The 
Holland profile is a little too flat in the outer region but quite good in the inner region. It 
has the advantage, though, of having a simpler form than (45).  
 
 Once V has been calculated, the boundary layer streamfunction can be obtained 
from (34), whence the radial velocity in the boundary layer and the vertical velocity at its 
top may be derived.  These are shown for the same solution in Figures 8 and 9, 
respectively. Note that while the vertical velocity is indeed negative in the outer region, it 
is too small to distinguish from zero in the graph.  
 
 We have made one initial attempt to compare (45) with observed wind profiles, 
using data collected from a NOAA WP-3D aircraft and made available by NOAA’s 
Hurricane Research Division. Figure 10 compares a profile of azimuthal wind at 3 km 
altitude from a single radial aircraft pass to the profile in (45) using the same parameters 

as before, except taking 160mV ms , 32mr km  and using 0.8n  . Thus this 

observed profile is a little flatter than the numerically simulated profile just outside the 
radius of maximum winds.  

    

Figure 7: Radial profiles of azimuthal velocity from an integration of the Rotunno and 
Emanuel (1987) model (solid), from (45) (dashed) and from the analytic model of Holland 
(1980) (dotted). See text for parameter values used.  

 
 
 



4. Summary 
 
 Early work on tropical cyclone energetics by Riehl, Kleinschmidt and by Riehl 
and Malkus recognized that such storms are powered by enthalpy transfer from the 
ocean. The latter authors came close to developing a correct closed form expression for 
the maximum sustainable wind speed. Subsequent work by Lilly and by the present 
author established such an expression, (21), although only in the last decade was the 
importance of dissipative heating recognized. The energy cycle makes clear that tropical 
cyclones are highly susceptible to small ocean cooling under their eyewalls, and also 
emphasizes the importance of the outflow temperature, which is governed by the 
entropy of the air ascending in the eyewall and the ambient temperature profile.  
 
 The intensification of tropical cyclones requires a rapid variation of downdraft 
enthalpy flux across the eyewall (Emanuel, 1997); this process also determined the 
radial profile of pressure and wind in this region. The wind profile in the eye itself 
represents a balance between Ekman pumping, which acts to spin down the circulation  
  

 

Figure 8: Magnitude of the inward radial velocity derived from (34) using the azimuthal 
velocity obtained from (45).  

 



 

Figure 9:  Same as Figure 8 but showing the vertical velocity. Note reduced radial scale.  

 

Figure 10: Comparison of (45) to profile of azimuthal wind observed in Hurricane Edouard 
of 1996. See text for parameter values.  

 

above the boundary layer, and inward turbulent diffusion of angular velocity from the 
eyewall, which acts in the opposite sense. Outside the eye, the surface wind controls the 
surface fluxes which, through the boundary layer quasi-equilibrium postulate, control the 



convective flux of enthalpy out the top of the boundary layer. On the other hand, there 
must be enough upward motion to balance, by adiabatic cooling, the sum of the 
convective heating and the radiative cooling. But this upward motion must match that 
demanded by Ekman pumping, which is determined by the radial variation of azimuthal 
wind. This requirement strongly constrains the radial wind variation outside the core. We 
here developed a set of nonlinear ODEs that govern this profile and found asymptotic 
solutions in certain limits. By patching such solutions together, we derived a uniformly 
valid wind profile, (45), which replicates that found in a numerical simulation using a 
nonhydrostatic, axisymmetric model. While not as elegant as the simple analytic wind 
profile proposed by Holland (1980), it does depend explicitly on environmental 
parameters. In particular, it predicts a steeper decline of wind with radius just outside the 
core when the mid-level environment is moist, the air-sea thermodynamic disequilibrium 
is large, and/or the precipitation efficiency is large.  
 
 

Appendix 
 

 The expression (21) for the maximum wind speed is not closed, because both *
sk  

and k  vary with radius.  The author (Emanuel, 1986; Emanuel, 1995) developed a 
closed form expression by assuming that the boundary layer relative humidity under the 
eyewall is the same as that of the unperturbed environment. Here we point out that the 

radial variation of both *
sk  and k  depend on the outer vortex structure. First, and without 

loss of generality, we write (21) in terms of moist static energy rather than enthalpy:  
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We next make use of the boundary layer quasi-equilibrium postulate, setting h  in (A1) to 

*
bh , the saturation moist static energy just above the top of the boundary layer. Variations 

in *
bh  at constant altitude are related to variations in the saturation entropy by the first 

law of thermodynamics: 
 

 * * ln ,b b d bh T s R T p     (A2) 

 
where bT  is the absolute temperature at the top of the boundary layer and we have 

neglected the difference between total pressure and the partial pressure of dry air. On 
the other hand, thermal wind balance, as given by (17), relates radial variations of 
saturation entropy to radial variations of angular momentum.  In the limit of very large or ,  

(17) may be written 
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Now using the definition of angular momentum, (9), and the gradient balance equation,  
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we can re-write (A3) as  
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Substituting (A4) into (A2) and neglecting any radial variations of bT  or oT , we can 

integrate the result between the radius of maximum winds at the outer limit of the vortex, 
where, be definition, 0v  , to obtain 
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, (A5) 

 

where mr  is the radius of maximum winds, or  is the outer limit of the vortex, and mp and 

ap  are the surface pressures at the radius of maximum winds and in the unperturbed 

environment, respectively. Note that boundary layer quasi-equilibrium, applied to the 

storm environment, gives *
a ah h , the boundary layer moist static energy. Also note that 

gradient wind balance may be used to find m

a

p
p given maxv . This is where the outer 

wind profile does influence the maximum wind speed, albeit weakly. Here we simplify 

matters by using an empirical relationship, 2
maxln ,m

d s
a

pR T bvp    where b  is an 

empirical constant. Using this, neglecting mfr  in comparison to maxv  and the difference 

between bT  and sT , and substituting (A5) into (A1) gives  
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Note that there is also a pressure dependence of *
sh , which we have not accounted for in 

(A6). The lower pressure at the radius of maximum winds will increase *
sh  over its 

ambient value, thus increasing the wind speed over that estimated using the ambient 
value of the saturation moist static energy of the sea surface. Also note that steeper 
wind profiles yield smaller values of b and this greater maximum winds. We estimate a 
typical value of b  by using the idealized wind profile given by (45) to evaluate the radial 



integral of the right side of (A3) and then comparing the result with the right side of (A4) 

using 2
maxln m

d s
a

pR T bvp   . This gives a value of b  very close to 1, making the 

denominator of (A6) slightly larger than 1 under typical conditions. Finally, as pointed out 
by Emanuel (1986), the last term in the numerator shows that the maximum wind speed 
decreases with storm size, through the effect is not large unless the outer radius 
becomes quite big, of order 1000 km.  
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