
Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic
Tropical Cyclone Tracks

ANNE S. DALOZ,a S. J. CAMARGO,b J. P. KOSSIN,c K. EMANUEL,d M. HORN,e J. A. JONAS,f

D. KIM,b T. LAROW,g Y.-K. LIM,h C. M. PATRICOLA,i M. ROBERTS,j E. SCOCCIMARRO,k

D. SHAEVITZ,l P. L. VIDALE,m H. WANG,n M. WEHNER,o AND M. ZHAO
p

a Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
bLamont-Doherty Earth Observatory, Columbia University, Palisades, New York

cNOAA/National Climatic Data Center, Asheville, North Carolina
dMassachusetts Institute of Technology, Cambridge, Massachusetts

e School of Earth, University of Melbourne, Melbourne, Victoria, Australia
fCenter for Climate Systems, Columbia University, New York, New York, and Global Modeling and Assimilation

Office, and Goddard Earth Sciences Technology and Research/I.M. Systems Group, NASA Goddard Space

Flight Center, Greenbelt, Maryland
g Florida State University, Tallahassee, Florida

hGlobal Modeling and Assimilation Office, and Goddard Earth Sciences Technology and Research/I.M. Systems

Group, NASA Goddard Space Flight Center, Greenbelt, Maryland
iTexas A&M University, College Station, Texas

jMet Office Hadley Centre, Devon, United Kingdom
k Istituto Nazionale di Geofisica e Vulcanologia, Bologna, and Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce, Italy

lDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York
mNational Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

nNOAA/NWS/NCEP/Climate Prediction Center, College Park, and Innovim, LLC, Greenbelt, Maryland
oLawrence Berkeley National Laboratory, and University of California, Berkeley, Berkeley, California

pNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

(Manuscript received 11 October 2013, in final form 5 November 2014)

ABSTRACT

A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example,

explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that

examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from

two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in

regional or global climate models with moderate to high horizontal resolution (18–0.258), and downscaled tracks

are obtained using a downscaling technique with large-scale environmental fields from a subset of these models.

For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to

a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation

between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf

of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity, and power dissipation

index in each cluster are documented for both configurations. The authors’ results show that, except for the

seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use

three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under

1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response

to each scenario is highly variable depending on the simulation considered. Finally, the authors examine the role

of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.
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1. Introduction

Tropical cyclones are one of the most devastating

phenomena in the world due to their strong winds and

heavy precipitation extending over wide areas (e.g.,

Scoccimarro et al. 2014; Villarini et al. 2014). Thus, there

has been a growing demand for better understanding

these phenomena and simulations of the response of

tropical cyclone activity to climate change. In the past

years, many studies have focused on the impact of cli-

mate change on tropical cyclone frequency and intensity

(e.g., Gualdi et al. 2008; Knutson et al. 2010; Zhao and

Held 2010; Stocker et al. 2014). Recently, a few studies

evaluated the impact of climate change on tropical cy-

clone tracks over the North Atlantic basin. Murakami

and Wang (2010) used a high-resolution global atmo-

spheric model (20km), while Colbert et al. (2013) used

a beta advection model with winds from phase 3 of the

Coupled Model Intercomparison Project (CMIP3); both

studies showed a decrease in straight moving storm tracks

reaching the Gulf of Mexico and the Caribbean Sea, as

well as an increase in recurving tracks reaching the cen-

tral Atlantic. These variations in tropical cyclone trajec-

tories are very important as they are a potential cause for

changes in the location of landfalling tropical cyclones.

Murakami andWang (2010) found that these changes in

tropical cyclones tracks were caused by an eastward shift

in genesis location. On the other hand, Colbert et al.

(2013) attributed the projected changes in tropical cyclone

trajectories to the large-scale steering flow. Camargo

(2013) analyzed the North Atlantic tracks in the phase

5 of the Coupled Model Intercomparison Project

(CMIP5) models and obtained no robust changes in

future simulations among the models. Mei et al. (2014)

analyzed North Atlantic tropical cyclones track density

in observations and one of the high-resolution models in

this study and found that, on interannual and decadal

time scales, a basinwidemode dominates, which is related

to the interannual frequency in the basin. Strazzo et al.

(2013) used a spatial lattice technique to analyze two of

the models in this study and identified regional biases in

theNorthAtlantic tropical cyclone activity. These studies

highlighted the importance of accurately simulating the

tropical cyclone tracks in addition to the frequency and

intensity of tropical cyclones.

To evaluate the ability of modern climate models to

represent the North Atlantic tropical cyclone tracks, the

characteristics of simulated tracks are explored through

the use of a cluster technique (Kossin et al. 2010). The

cluster technique applied to observed tracks leads to

a meridional and a zonal separation in four groups. The

meridional separation largely captures the separation be-

tween deep tropical and subtropical, hybrid or baroclinic

cyclones, while the zonal partition tends to segregate

Gulf of Mexico from Cape Verde systems. Figure 1 shows

the separation of the historical tracks, genesis and land-

fall points among each of the four clusters for National

Hurricane Center North Atlantic Hurricane Database

(HURDAT; Jarvinen et al. 1984) for the period 1950–

2013, similarly to what was shown in Kossin et al. (2010)

for the 1950–2007 storms. In the four clusters, storms in

clusters 1 and 2 tend to form farther north than storms

from clusters 3 and 4. Storms from clusters 1 and 3 tend

to form farther east than storms from clusters 1 and 4 (cf.

Fig. 1). Cluster 2 storms form almost exclusively in the

Gulf of Mexico and westernmost Caribbean and usually

present a northward component in their tracks. Cluster 1

storms form farther east but also tend to have a pro-

nounced northward component. Essentially all classic

‘‘Cape Verde’’ tropical cyclones are found in either

cluster 3 or 4. Clusters 3 and 4 are both influenced by the

African easterly waves coming from the West African

continent. Compared to cluster 4 storms, which tend to

maintain their primarily westward track until landfall,

cluster 3 storms aremore often ‘‘recurving.’’ In this study,

we first want to verify that the characteristics of the ob-

served tropical cyclone tracks [as discussed in Kossin

et al. (2010) and shown in Fig. 1] are simulated by the

climate models.

The climatological properties of North Atlantic tropical

cyclone tracks inmoderate- to high-resolution atmospheric

climate models are documented in this paper and com-

pared to the observations. Themodel simulations analyzed

here have been produced for the U.S. Climate Variability

and Predictability Research Program (CLIVAR) Hurri-

cane Working Group by various modeling centers. An

overview of the U.S. CLIVARHurricaneWorking Group

objectives and results is given inWalsh et al. (2015). As far

as we know, previously, only one other intercomparison

project has focused on the study of tropical cyclone activity:

the Tropical Cyclone Climate Model Intercomparison

Project (TC-MIP; Walsh et al. 2010). However, in that

project a different set of simulations was studied. Daloz

et al. (2012) showed that in the TC-MIP simulations the

majority of climate models have problems representing

tropical cyclone activity on the eastern Atlantic because

of biases in large-scale fields and/or African easterly

wave activity. These issueswill also be examined for some

models in this study (depending on availability). Here,

both explicit and downscaled North Atlantic tropical

cyclone tracks are examined.

The explicit tropical cyclone tracks originated from nine

climate models (global and regional) with a spatial reso-

lution varying from 0.258 to 18. Tracks were obtained using
detection and tracking algorithms that find and track

storms in the output of these climate models. Typically,
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each modeling group developed their own tracking algo-

rithm using very similar but different criteria to define and

track the model storms. This is clearly a limitation of our

analysis; therefore, our results should be considered ten-

tative. This issue will be further addressed below. The

tracking algorithms have specific criteria for several dy-

namic and thermodynamic variables leading to the de-

tection and tracking of tropical cyclone–like systems

(Walsh 1997; Camargo and Zebiak 2002; Chauvin et al.

2006). The climate models are forced with prescribed cli-

matological sea surface temperatures (SSTs): that is, with

the same values every year, varying monthly with the sea-

sonal cycle for a climatological season. As the models are

forced with climatological SSTs, it will not be possible to

consider climate variability in our analysis. Themodulation

of North Atlantic tropical cyclones by El Niño–Southern

FIG. 1. Observed North Atlantic tropical cyclone tracks, genesis locations, and landfall locations during the period 1950–2013 for

HURDAT, as separated by the cluster analysis. This figure is similar to what was shown in Kossin et al. (2010) for the period 1950–2007.
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Oscillation (ENSO) in the same set of models was ana-

lyzed in Wang et al. (2014) (global climate models) and

Patricola et al. (2014) (regional climate model). Here we

will evaluate the ability of the different models to correctly

simulate themain characteristics ofNorthAtlantic tropical

cyclones, such as track types, frequency, intensity, and

duration. A description of the global characteristics of the

tropical cyclones in the same set of models for the present

climate was presented in Shaevitz et al. (2015).

Previous studies showed that a realistic simulation of

tropical cyclones structure and intensity requires high

horizontal- and vertical-resolution models (Rotunno

et al. 2009; Rao et al. 2010; Zhang and Wang 2003;

Manganello et al. 2012; Strachan et al. 2013; Walsh et al.

2013; Wehner et al. 2015; Zarzycki and Jablonowski

2014). Manganello et al. (2012) obtained realistic in-

tensities as well as eyewall structure with a climatemodel of

horizontal resolution of 0.18. However, the horizontal reso-

lution of most climate models (.0.258) is too coarse to ad-

equately resolve these storms, especially the most intense

storms. Low-resolution climate models (;28–38) are able to
produce tropical cyclone–like storms, but some of the

tropical cyclone characteristics, such as size and intensity,

differ from the observed ones (e.g., Camargo et al. 2005).

To deal with these high-resolution requirements, sev-

eral downscaling techniques have been developed. In the

second part of this paper, we analyze the results from

tropical cyclones obtained with the statistical–dynamical

downscaling technique described in Emanuel (2006) and

Emanuel et al. (2006). One benefit of this type of down-

scaling technique is to generate a very large number of

synthetic storm tracks with realistic intensity based on

climate model environmental fields. This technique has

been successfully applied to various reanalyses (Emanuel

2010) and climate models (Emanuel et al. 2008, 2010;

Emanuel 2013) and coupled with storm surgemodels (Lin

et al. 2012). However, this technique also presents some

drawbacks such as the absence of statistics of potential

initiating disturbances (e.g., African easterly waves). This

point will be further discussed in the article. Here we

compare the tracks obtained by downscaling the large-

scale variables simulated by four of the climate models

analyzed in the first part of the study.

Finally, simple future climate projections are examined.

The independent and combined effects of an increase

in CO2 and a uniform warming of SST are considered.

Previous studies with prescribed SSTs (e.g., Sugi et al. 2002;

Bengtsson et al. 2007) aswell as coupledmodels (Yoshimura

and Sugi 2005; Gualdi et al. 2008; Held and Zhao 2011)

showed that, at a global scale, there is a projected small

decrease in the global tropical cyclone frequency in future

climates [see a review in Knutson et al. (2010)]. Yoshimura

and Sugi (2005) examined the impacts of increased SST and

CO2 on tropical cyclone activity separately. The same ef-

fects were examined by Held and Zhao (2011), who found

that both SST warming and CO2 doubling have an im-

portant role in the global decrease of TC frequency in

future climates. In this study, wewould like to determine if

the results from Held and Zhao (2011) are robust across

the tropical cyclones from various climate models in the

North Atlantic basin, as well as for the tropical cyclones

obtained by downscaling these climate models.

Kossin et al. (2010) determined that clusters could

contribute differently to the observed trends in the

North Atlantic storm frequency in the current climate.

They showed that trends are governed by the deep

tropical storms (cluster 3), which account for most of

the major tropical cyclones. This cluster is therefore

very important as it contains some of the most dan-

gerous tropical cyclones. Furthermore, several studies

showed an intensification of tropical activity in future

climates (Chauvin et al. 2006; Oouchi et al. 2006;

Knutson et al. 2010; Villarini and Vecchi 2013). One

can wonder if the potential intensification of North

Atlantic tropical cyclones in the future climate could be

attributed to changes in frequency or intensity of

a specific cluster. This topic will be explored in the last

part of our results.

In summary, the objectives of this study are (i) to ex-

amine simulated North Atlantic tropical cyclone tracks

from explicit and downscaled simulations and determine

if they are able to reproduce the main characteristics of

the observed North Atlantic tropical cyclone clusters

obtained in Kossin et al. (2010); (ii) to investigate the

tropical cyclone track clusters for different models, con-

sidering different ways of generating the tropical cyclones

(explicitly or downscaling) and different scenarios (cli-

matological SST, SST warming, an increase of CO2, or

both); and (iii) to determine if the projected changes in

tropical cyclone activity over the North Atlantic basin

could be attributed to specific clusters.

Section 2 summarizes the cluster technique and de-

scribes the models and the tracking algorithms used. In

section 3, the characteristics of the explicitly simulated

North Atlantic tropical cyclone clusters are analyzed. In

section 4, the same analysis is performed for the down-

scaled tropical cyclones. Section 5 explores, using clus-

ters, future changes in frequency and intensity of North

Atlantic tropical cyclones. Finally, a summary and a dis-

cussion of our results are presented in section 6.

2. Clustering method and data

a. Clustering method

The cluster technique used in this study relies on a

mixture of quadratic regression models, which are used
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to fit the geographical shape of tropical cyclone tracks.

Each component of the mixture model uses a poly-

nomial regression curve of storm position against

time. Each track is assigned to one of K different re-

gression models. Each model is described by a set of

different parameters, a regression coefficient, and

a noise matrix. The cluster technique is described in

detail in Gaffney et al. (2007). The technique has al-

ready been applied to observed tropical cyclone tracks

in various regions, namely the North Atlantic (Kossin

et al. 2010), western North Pacific (Camargo et al.

2007), eastern North Pacific (Camargo et al. 2008),

Southern Hemisphere (Ramsay et al. 2012), and Fiji

(Chand and Walsh 2009).

Kossin et al. (2010) showed that, for North Atlantic

observed tropical cyclone tracks, the optimal number of

clusters was four. In that study, an in-sample log-likelihood

value narrowed down the ideal number of cluster to

values between three and six clusters. The final se-

lection, four clusters, was qualitatively based on physical

characteristics of the basin. The first factor considered

was the modulation of the North Atlantic tropical cy-

clone activity by the Atlantic meridional mode (AMM)

and ENSO. Another selection factor was based on how

well the clusters represented subsamples of storm tracks

based on geographic location of tropical cyclogenesis.

At least four clusters were necessary to correctly

characterize the track types that appeared in the sub-

samples examined. Based on these combined factors,

four clusters was the optimal choice. In this study, we

also choose to use four clusters, as we wanted to com-

pare the results of the models with those from obser-

vations. Figure 1 shows the resulting tracks, genesis and

landfall locations obtained when applying this cluster

technique to the observed North Atlantic tropical cy-

clone tracks [extending the results of Kossin et al.

(2010) through 2013].

Also the analyses on the observed clusters are per-

formed over the period from 1950 to 2013 for the ob-

servations. Landsea et al. (2010) showed that including

the presatellite era tends to introduce an underestimate

of the number of shorter tracks. In our case, including

the presatellite era does modify the number of storms in

clusters 3 and 4 but does not change the other charac-

teristics of the clusters. The results of cluster analysis

could be potentially sensitive to the track length; how-

ever, Camargo et al. (2007) showed that cluster assign-

ments are modified because of the track length only

when very drastic changes are done.

b. Explicit simulations

Two types of experiments are used in this study,

namely explicit and downscaled simulations, as explained

in the Introduction and shown in Fig. 2. The explicit

tropical cyclones were generated from nine climate

models listed in Table 1. The model simulations were

forced with prescribed climatological SST and sea

ice from the Hadley Centre Sea Ice and Sea Surface

Temperature Experiment dataset (HadISST; Rayner

et al. 2003). The radiative gas forcing follows the 1992

Intergovernmental Panel on Climate Change (IPCC)

specifications. Four types of simulations are used: a con-

trol experiment and three idealized warming scenarios.

The control experiment (CTL) is forced with clima-

tological SST (climatological mean of the period

1981–2005). There are three idealized future simulations.

The first future experiment corresponds to the climato-

logical SST with 2K added globally, ‘‘plus 2K’’ (p2K).

The second future experiment, named ‘‘double CO2’’

(2CO2), is forced with the same climatological SST, but

the CO2 concentration is doubled in the atmosphere. In

the third future experiment, ‘‘plus 2K and double CO2’’

(p2K2CO2) is the combination of the last two scenarios:

that is, the models are forced with climatological SST

FIG. 2. Schematic representation of the explicit and downscaled simulations.
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with 2 K added globally and a doubling of the CO2

concentration.

c. Tracking algorithms

The simulated tropical cyclones were tracked by each

modeling group using the tracking methodology nor-

mally adopted by them. The tracking routines used in

most groups are based in very similar principles, but

there are differences among them. The criteria chosen

and the thresholds vary depending on the tracking al-

gorithm and the spatial resolution for each model. The

tracking algorithms employed in this study are all de-

scribed in the appendix.

Previous studies showed that the frequency of tropical

cyclones could be sensitive to the method of identifica-

tion of the storms (Walsh et al. 2007; Horn et al. 2014).

Horn et al. (2014) showed that the basic differences

between tracking schemes are not of primary importance

however differences in duration, wind speed, or formation-

latitude thresholds are crucial. After homogenization of

these thresholds, there is large agreement between differ-

ent tracking schemes. The sensitivity of the cluster analysis

TABLE 1. Presentation of the explicit and downscaled simulations from CLIVAR. The models are classified going from higher to lower

horizontal resolution. (Model name expansions are provided in a searchable list at http://www.ametsoc.org/PubsAcronymList, under the

heading ‘‘Climatic, meteorological, oceanographic, and other models’’.)

Model:

institution

Horizontal and

vertical

resolutions;

No. of years

Type of

simulations

Name of the

simulations in the

article

Model

description

reference

Reference for

the tracking

methodology

CAM5.1: National Center

for Atmospheric

Research (NCAR),

United States

0.258, 30 levels; 65 yr Explicit CAM5_E Wehner et al. 2015 Knutson et al. 2007

Downscaled CAM5_D Emanuel et al. 2008 —

WRF: Texas A&M

University, United States

0.258, 28 levels; 40 yr Explicit–lateral

boundary

conditions:

NCEP-2

WRF_E Skamarock et al. 2008 Walsh 1997

HIRAM2.1: Geophysical

Fluid Dynamics

Laboratory (GFDL),

United States

0.58, 32 levels; 80 yr Explicit GFDL_E Anderson et al. 2004;

Zhao et al. 2009

Zhao et al. 2009

Downscaled GFDL_D Emanuel et al. 2008 —

GEOS5: National

Aeronautics and Space

Administration (NASA)

Global Modeling and

Assimilation Office,

United States

0.58, 72 levels; 76 yr Explicit GSFC_E Rienecker et al. 2008 Vitart et al. 2003

HadGEM3A: Met Office

Hadley Centre, United

Kingdom

0.68, 85 levels; 24 yr Explicit HG3A_E Walters et al. 2011 Strachan et al. 2013

ECHAM5: Centro Euro-

Mediterraneo per I

Cambiamenti Climatici

(CMCC), Istituto

Nazionale di Geofisica e

Vulcanologia (INGV),

Italy

0.98, 31 levels; 80 yr Explicit CMCC_E Roeckner et al. 2003;

Scoccimarro et al. 2011

Walsh 1997

Downscaled CMCC_D Emanuel et al. 2008 —

GISS-GCM: NASA GISS

and Columbia

University, United States

18, 40 levels; 40 yr Explicit GISS_E Schmidt et al. 2014 Camargo and

Zebiak 2002

Downscaled GISS_D Emanuel et al. 2008 —

GFS: National Centers for

Environmental

Prediction (NCEP),

United States

18, 64 levels; 40 yr Explicit GFS_E Saha et al. 2014 Zhao et al. 2009

FSU-GCM: Center for

Ocean–Atmospheric

Prediction Studies

(COAPS), Florida State

University, United States

18, 27 levels; 15 yr Explicit FSU_E Cocke and LaRow 2000;

LaRow et al. 2008

LaRow et al. 2008
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to the tracking techniques (described in the appendix)

has been examined for two models using the data from

Horn et al. (2014): only the results for the CMCC_E

model (cf. Table 1) are presented here. This has to be

considered as a tentative analysis, as we could not test all

the models and tracking algorithms. Three different

tracking algorithms were employed to detect the North

Atlantic tropical cyclones tracks. The first tracking al-

gorithm is the one originally used by the group for

tracking the tropical cyclones; it follows the criteria

defined in Walsh (1997). The second one is a modified

Commonwealth Scientific and Industrial Research Or-

ganization (CSIRO) tracking scheme (Walsh et al. 2007;

Horn et al. 2013). Finally, the third algorithm is the one

from Zhao et al. (2009). The first and second tracking

algorithms have similarities as they both are based on

the algorithm of Walsh (1997); this should be kept in

mind as we examine the results of the test.

Figure 3 presents the results of the test and shows the

location of the genesis points for the four clusters using

the three tracking algorithms. Here, our focus is not on

the ability of CMCC_E to simulate the clusters, but to

evaluate the differences among the clusters using dif-

ferent detection schemes. Figure 3 shows that the posi-

tion of the genesis points in each cluster is very similar

when using the tracking algorithms from Walsh (1997)

(Fig. 3a) or Horn et al. (2013) (Fig. 3b). This is certainly

due to the similarities in these two tracking algorithms, as

explained above. Cluster 1 storms are developing over

high latitudes, cluster 2 storms tend to appear over the

Gulf of Mexico, and cluster 4 storms appear over the

Caribbean Sea. Finally, cluster 3 storms develop over

a band going from the Caribbean Islands to the West

African coast. Some differences appear when using the

tracking scheme from Zhao et al. (2009) (Fig. 3c). Clus-

ters 2 and 4 are similar for the three tracking schemes, but

some differences appear for clusters 1 and 3. The genesis

points of cluster 1 are located farther north, while more

genesis points appear off the West African coast for

cluster 3 storms when detected with the scheme from

Zhao et al. (2009). However, these differences do not

change the general characteristics of the storms in each

cluster. For instance, cluster 1 storms, in all three tracking

algorithms, are tropical cyclones that tend to develop

over higher latitudes, while cluster 3 storms are systems

that tend to develop in the eastern part of the Atlantic

basin.

Complementary to Fig. 3, Table 2 presents the num-

ber of tropical cyclones detected per year for CMCC_E

using the three different tracking algorithms. The num-

ber of tropical cyclones detected is the same when using

the scheme from Walsh (1997) or the modified CSIRO

scheme. However, when using the scheme from Zhao

et al. (2009), there are differences. The total number of

tropical cyclones per year increases from 1.5 to 2.4, but it

does not change the main result: that is, CMCC_E highly

underestimates the number of tropical cyclones over the

North Atlantic basin. The differences in the number of

TCmainly come from clusters 1 and 4, which double with

the Zhao scheme.

In summary, while we do not think that using different

tracking algorithms for comparing tropical cyclone

FIG. 3. North Atlantic tropical cyclone genesis locations of the tracks for CMCC_E, as separated by the cluster analysis. Tropical

cyclones tracks are detectedwith the tracking algorithm from (a)Walsh (1997), (b) Camargo andZebiak (2002), and (c) Zhao et al. (2009).

Cluster 1 is in dark blue, cluster 2 is in light blue, cluster 3 is in pink, and cluster 4 is in red.

TABLE 2. Number of tropical cyclones per year detected with the

tracking algorithms from (i) Walsh (1997), (ii) Horn et al. (2013),

and (iii) Zhao et al. (2009) for each cluster and the total, for the

explicit simulation CMCC_E, and (iv) for the observations

(HURDAT: 1950–2013).

CMCC_E Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

Walsh

(1997)

0.3 0.5 0.2 0.5 1.5

Horn et al.

(2013)

0.3 0.5 0.2 0.5 1.5

Zhao et al.

(2009)

0.8 0.6 0.2 0.8 2.4

Observations 3.5 2.9 3.7 2.3 12.4
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tracks is ideal, for the present study, the use of the same

tracking algorithm for all the models was not possible.

Therefore, we decided to use the tracks available to us,

keeping in mind that differences that we find among the

models can be due to the differences between the models

themselves but also probably be partly attributed to the

differences in tracking algorithms. Therefore, we will not

specifically compare the number of tropical cyclones

between each cluster for the explicit simulations but just

discuss cases in which a model highly underestimates or

overestimates the number of systems produced compared

to the observations and othermodels. The use of different

tracking algorithms modifies some of the characteristics

of the clusters (e.g., number); however, it cannot change

the ability of a model to produce tropical cyclones. The

high underestimation of the number of storms of CMCC_E

cannot be completely removed by a change in tracking

algorithm. The difference of algorithm only slightly

changes the total number of storms, especially the num-

ber of weak storms, which can be more sensitive to the

specific thresholds in the different tracking algorithms.

So, the comparison of some of the characteristics of the

clusters between observations and differentmodels is still

pertinent.

d. Downscaled simulations

For the downscaled simulations, the technique de-

veloped by Emanuel et al. (2006) was used. The down-

scaled simulations are described in Fig. 2 and Table 1.

The downscaling technique of Emanuel et al. (2006,

2008) consists of, first, initiating storms by random

seeding in space and time with warm-core vortices that

have peak wind speeds of 12m s21. The random ‘‘seeds’’

are planted everywhere and at all times, regardless of

latitude, sea surface temperatures, season, or other

factors, except that storms are not allowed to form

equatorward of 28 latitude. Then the storms are propa-

gated forward with a beta and advection model driven

by winds derived by the four climate models presented

in Table 1. The seeds are not considered to form tropical

cyclones unless they develop winds of at least 21ms21.

Only four downscaled simulations were performed be-

cause of a lack of data from the climate models output

when the downscaled simulations were performed.

To derive the storm intensity along each track, a very

high-resolution coupled atmosphere–ocean hurricane

model is used: namely, the Coupled Hurricane Intensity

Prediction System (CHIPS; Emanuel et al. 2006).

CHIPS is an axisymmetric atmospheric model in po-

tential radius coordinates (Schubert and Hack 1983).

CHIPS is coupled to a simple, one-dimensional ocean

model that captures most of the effects of upper-ocean

mixing. The atmospheric model can reach a couple of

kilometers of horizontal resolution. The potential radius

coordinates permit obtaining high resolution for the eye

and the eyewall using a relatively small number of radial

nodes. Inputs to CHIPS are in the form of monthly-

mean climatological potential intensity (which combines

the thermodynamic control on tropical cyclone intensity

of both the sea surface temperature and the environ-

mental atmospheric temperature profile). Oceanmixed

layer depth and thermal stratification of the ocean be-

low the mixed layer are all interpolated to the position

and time of the storm. Emanuel et al. (2004) studied the

effect of using monthly-mean climatological intensity

instead of daily data and found that it was minimal in

most cases.

Previous studies have already demonstrated that the

tropical cyclone activity from this downscaling tech-

nique is generally realistic (e.g., Emanuel et al. 2006;

Emanuel 2010). For instance, Emanuel et al. (2006)

showed that, when driven by NCAR–NCEP reanalysis

(Kalnay et al. 1996), the synthetic tracks obtained cap-

ture correctly the observed spatial and seasonal vari-

ability of tropical cyclones around the globe. However,

this technique presents some drawbacks such as the lack

of the feedbacks between the tropical cyclones and their

environment. Also, notably absent from this technique

is the statistics of potential initiating disturbances, such

as African easterly waves. This may impact the realism

of the timing of the development of tropical cyclones

over the eastern part of the North Atlantic basin.

3. Climatology of clusters from explicit simulations

a. Tracks and genesis

Figure 4 presents the general climatology of North

Atlantic tropical cyclone genesis by cluster membership

for observations (Fig. 4a: HURDAT dataset period

1950–2013; Jarvinen et al. 1984) and the nine explicit

simulations (Figs. 4b–j) described in Table 1. Table 3

summarizes various measures of tropical cyclone activity

for each of the four clusters shown in Fig. 4 for observa-

tions and the nine models. These figures and Table 3

clearly show the separation of the NorthAtlantic tropical

cyclone genesis (Fig. 4) locations in each of the four

clusters, with meridional and zonal separations between

the clusters. The separation between the clusters is ex-

amined deriving the mean position of TCs in each cluster

(cf. Table 3). The number of North Atlantic tropical cy-

clones for most of the explicit simulations is smaller than

in observations. For some models, there were only 10 or

15 tropical cyclones over the entire time period of the

control simulation. To have a large sample size and to

apply the same procedure for all the simulations, the

cluster analysis was performed for each model using all

1340 JOURNAL OF CL IMATE VOLUME 28



the ensembles and scenarios simultaneously. We did

sensitivity tests for the model with most storms (GFDL_E)

and determined that applying the cluster analysis to all

the scenarios simultaneously would not lead to different

results than if we applied the cluster analysis for each

scenario separately (not shown). It is important to notice

that the cluster analysis has no knowledge of which sim-

ulation the track belongs to. Therefore, as we wanted to

use the samemethodology for allmodels, themodelswith

a very low number of storms restricted us to apply the

cluster analysis to all the tracks in a model together, in-

dependently of the scenario. Once the storms are classi-

fied in clusters, we examine if there are differences in the

characteristics of the clusters for the different scenarios.

The comparison of the cluster analysis applied toNorth

Atlantic tropical cyclones in observations (Fig. 4a) with

the simulated tropical cyclones in GFDL_E (Fig. 4d)

shows encouraging results. There is a good agreement in

terms of cluster separation (Table 3) for the genesis lo-

cations (Fig. 4) between the observations and GFDL_E.

FIG. 4. North Atlantic tropical genesis locations of the tracks for observations and explicit

simulations, as separated by the cluster analysis. Cluster 1 is in dark blue, cluster 2 is in light

blue, cluster 3 is in pink, and cluster 4 is in red. The models are presented following the

alphabetical order with first the four models that were used for both explicit and downscaled

simulations and then the five other explicit simulations.
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The left panels of Fig. 5 show the tracks in each four

clusters for GFDL_E. Compared to observations in

Fig. 1, GFDL_E shows a good representation of the

tracks (Figs. 5a,c,e,g) and landfall (not shown) locations.

Figures 4a and 4d show that, for both the observations

and this explicit simulation in clusters 1 and 2, tropical

cyclones tend to form farther north than in clusters 3 and

4, while the tropical cyclones in clusters 1 and 3 tend to

form farther east than in clusters 2 and 4. In cluster 2,

tropical cyclones tend to form almost exclusively in the

TABLE 3. Comparison of various measures by cluster for the observations from HURDAT (1950–2013) and the nine explicit simu-

lations. Percent values (in parentheses) represent the proportions of tropical cyclones from each cluster to the total number of tropical

cyclones.

All runs Dataset Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

No. of TC per year OBS 3.5 (28%) 2.9 (24%) 3.7 (30%) 2.3 (18%) 12.4

CAM5_E 2.6 (26%) 3.5 (35%) 1.7 (18%) 2.1 (21%) 9.9

CMCC_E 0.3 (18%) 0.5 (33%) 0.2 (14%) 0.5 (35%) 1.5

GFDL_E 3.7 (34%) 2.2 (21%) 2.8 (26%) 2.0 (19%) 12.7

GISS_E 1.7 (28%) 1.7 (28%) 1.7 (29%) 0.9 (15%) 6.0

FSU_E 5.5 (22%) 6.4 (24%) 6.4 (24%) 7.9 (30%) 26.2

GFS_E 1.7 (19%) 2.1 (25%) 3.6 (42%) 1.1 (14%) 8.5

GSFC_E 1.0 (17%) 1.5 (26%) 1.6 (29%) 1.6 (28%) 5.7

HG3A_E 2.1 (25%) 2.3 (27%) 2.2 (26%) 1.9 (22%) 8.5

WRF_E 1.2 (5%) 6.5 (29%) 6.2 (27%) 8.7 (39%) 22.6

Mean position (latitude, longitude) OBS 278N, 648W 228N, 848W 148N, 378W 148N, 658W
CAM5_E 248N, 598W 178N, 728W 128N, 188W 158N, 308W
CMCC_E 298N, 668W 218N, 868W 188N, 508W 158N, 808W
GFDL_E 288N, 518W 238N, 768W 148N, 298W 158N, 588W
GISS_E 328N, 698W 188N, 808W 348N, 448W 158N, 558W
FSU_E 188N, 668W 98N, 448W 118N, 408W 108N, 498W
GFS_E 258N, 488W 228N, 668W 148N, 318W 288N, 328W
GSFC_E 238N, 538W 178N, 768W 78N, 298W 78N, 408W
HG3A_E 118N, 788W 128N, 848W 168N, 438W 168N, 788W
WRF_E 188N, 208E 248N, 648W 148N, 188W 178N, 788W

Mean duration per TC (days) OBS 6.2 5.6 10.6 8.4

CAM5_E 8.1 8.5 12.6 13.1

CMCC_E 2.1 3.3 4.0 3.6

GFDL_E 8.3 9.1 10.1 9.8

GISS_E 15.6 14.3 14.6 13.7

FSU_E 10.6 15.1 11.4 12.3

GFS_E 5.1 5.4 5.5 5.4

GSFC_E 3.6 3.3 3.8 3.5

HG3A_E 16.2 16.6 15.6 11.4

WRF_E 4.8 4.3 6.8 5.0

Mean LMI per TC (m s21) OBS 34 34 43 44

CAM5_E 46 48 42 58

CMCC_E 21 22 23 22

GFDL_E 44 45 42 43

GISS_E 16 14 17 12

FSU_E 34 37 35 38

GFS_E 22 21 22 24

GSFC_E 20 17 16 16

HG3A_E 23 26 32 26

WRF_E 29 37 34 39

Mean PDI per TC (1010 m3 s22) OBS 1.2 1.0 4.0 2.8

CAM5_E 3.5 3.6 4.9 8.8

CMCC_E 0.1 0.2 0.3 0.2

GFDL_E 3.3 3.5 4.6 3.9

GISS_E 0.2 0.1 0.2 0.1

FSU_E 1.4 2.5 1.6 2.3

GFS_E 0.2 0.3 0.4 0.3

GSFC_E 0.1 0.1 0.1 0.1

HG3A_E 0.4 0.8 1.4 0.6

WRF_E 0.9 1.2 1.8 1.8
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FIG. 5. North Atlantic tropical cyclone tracks for (left) GFDL_E and (right) GFDL_D, as separated by

cluster analysis.
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Gulf of Mexico and westernmost Caribbean, while in

cluster 1 they tend to form farther east. Clusters 1 and 2

present a pronounced northward component in their

tracks (Figs. 1 and 5). Essentially all classic ‘‘Cape Verde

tropical cyclones’’ are found in clusters 3 and 4. Cluster 4

tropical cyclones tend to maintain their primarily west-

ward track until landfall (straight movers; Figs. 1 and 5).

Cluster 3 storms are more likely to ‘‘recurve’’ (Figs. 1 and

5), which characterizes the evolution of a storm track

from westward and northward to eastward and northward

(e.g., Hodanish and Gray 1993). More details about the

observed clusters characteristics can be found in Kossin

et al. (2010).

Unfortunately, the other models present substantial

differences in their position of tropical cyclone genesis

(Figs. 4b–j and Table 3) when compared to the obser-

vations (Fig. 4a). As an example, the left panels of Fig. 6

present the resulting tracks for the four clusters of

GISS_E. The large disparity in the representation of

tropical cyclone activity among themodels can be due to

several reasons, such as differences in physical param-

eterizations, especially convection schemes (e.g., Kim

et al. 2012; Zhao et al. 2012), vertical or horizontal res-

olutions (Rotunno et al. 2009; Rao et al. 2010; Zhang

and Wang 2003; Manganello et al. 2012; Walsh et al.

2013), and dynamical cores (Reed and Jablonowski

2011a,b, 2012). Half of the models examined here have

a horizontal resolution around 18 (HG3A_E, CMCC_E,

GISS_E, GFS_E, and FSU_E); however, as an accurate

simulation of tropical cyclones requires high-resolution

models (e.g., Rotunno et al. 2009; Manganello et al.

2012; Walsh et al. 2013), 18 is still too coarse to represent

adequately many characteristics of tropical cyclones, es-

pecially intensity. However, the spatial resolution is not

the only explanation for the model biases. WRF_E has

the highest resolution among the models, but in WRF_E

cluster 1 the tropical cyclones have an unrealistic genesis

location (Fig. 4j) over theWest African continent. In this

case, this bias is probably coming from the tracking al-

gorithm, which starts tracking the storms while they are

still easterly waves over the West African continent.

Daloz et al. (2012) showed that many climate models

present large biases when simulating tropical cyclone

activity over the eastern Atlantic (clusters 3 and 4

storms). They mainly attributed these model biases to

differences in large-scale fields and/or difficulties in sim-

ulating the African easterly waves over the West African

coast. To further explore this hypothesis, Table 4 presents

the mean African easterly wave activity over the West

African continent for a subset of explicit simulations and

the reanalysis ERA-Interim (1979–98; Dee et al. 2011).

TheAfrican easterly wave activity was obtained using the

technique from Fyfe (1999). A maximum of variance of

the 2–6-day filtered meridional wind at 850hPa over

western Africa is defined as a maximum in African

easterly waves activity.

Table 4 also present the mean vertical wind shear

defined as the 24-h averaged vector difference between

200 and 850 hPa over the eastAtlantic basin for the same

subset of explicit simulations. High values of vertical

wind shear are known to be an unfavorable environment

for the formation of tropical cyclones (Gray 1968).

Values of vertical wind shear over around 10m s21 are

detrimental to tropical cyclone development. Unfor-

tunately, these variables could not be calculated for all

the models, as the necessary data were not available.

GISS_E (Fig. 4e) generates very few or misplaces cluster

3 tropical cyclones. The genesis locations for their cluster

3 cyclones are in the center of the North Atlantic basin

around 408N, while in observations genesis occurs near

the West African coast around 208N. In agreement with

Daloz et al. (2012), GISS_E highly underestimates Afri-

can easterly wave activity compared to ERA-Interim (cf.

Table 4). On the other hand, CMCC_E (Fig. 4c) presents

a reasonable African easterly wave activity but does not

develop many tropical cyclones in the eastern Atlantic.

Also, Bain et al. (2014) showed that theMetOfficemodel

(HG3A_E) is able to represent African easterly wave

features at the climate time scale; however, it under-

estimates the strength and the frequency of the wave.

This could partly explain the low tropical cyclone activity

on the eastern part of the Atlantic basin (Fig. 4i). The

unfavorable values of vertical wind shear (cf. Table 4)

help explain why the genesis is concentrated in the

western part of the Atlantic. It also interesting to note

that, for GFS_E (Fig. 4g), most of the tropical cyclone

genesis is located in the eastern part of the Atlantic basin.

Furthermore, this model presents a very high-level Af-

rican easterly wave activity, nearly triple what is observed

in ERA-Interim, which could be associated with low

values of vertical wind shear. Humidity fields would also

have been a good indicator for explaining some of the

differences among the models, but they were not avail-

able at the same pressure level for all the models.

b. Storm characteristics

In observations (HURDAT), the annual-mean num-

ber of North Atlantic tropical cyclones is 12.4 (tropical

storms and hurricanes: i.e., named storms) for the period

1950–2013 while in the models’ explicit simulations this

number varies from 26.2 and 22.6 tropical cyclones per

year in the FSU_E andWRF_E models, respectively, to

1.5 tropical cyclones per year for the CMCC_E model.

CAM5_E, HG3A_E, GFDL_E, and GFS_E have the

most realistic values, with approximately 10 tropical

cyclones per year, while GSFC_E and GISS_E have
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FIG. 6. As in Fig. 5, but for GISS_E and GISS_D.
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only around 6 tropical cyclones per year. In observa-

tions, more than half of the tropical cyclones (52%) are

members of clusters 1 and 2, which form over higher

latitudes (north of 208N) and will be called here the

northernmost tropical cyclones. In contrast, tropical cy-

clones in clusters 3 and 4 typically have genesis locations

in the deep tropics (south of 208N) and will be called here

the southernmost tropical cyclones. As explained in sec-

tion 2, the number of tropical cyclones per year in Table 3

is only indicative and will not be discussed because of the

differences in tracking methodology. Just for confirming

the difficulty of analyzing this value, for most of the ex-

plicit models, the standard deviation for the mean num-

ber of tropical cyclones per year was high, showing a large

variation around the mean.

In observations (cf. Table 3), the northernmost trop-

ical cyclones have a mean lifetime of 6.2 and 5.6 days,

while the southernmost tropical cyclones mean lifetimes

are longer with 10.6 and 8.4 days as they have more time

to travel over the Atlantic Ocean before touching the

coasts. Tropical cyclones for most of the explicit simu-

lations have very similar mean lifetime duration for all

clusters. Also, the simulated mean duration of tropical

cyclones is usually different from the observations, with

the northernmost tropical cyclone lifetime varying from

2.1 days for CMCC_E to 16.6 days for HG3A_E. In the

case of the southernmost tropical cyclones, the mean

lifetime varies from 3.5 days for GSFC_E to 15.6 days

for HG3A_E. The comparison of mean duration per

tropical cyclone is complicated by the fact that the

models do not share the same tracking algorithms and

the storm duration is highly dependent on the tracking

algorithm thresholds. To examine the sensitivity of the

storm lifetime to the tracking thresholds, we applied

a wind criterion, which depends on the spatial resolution

of the model, followingWalsh et al. (2007). For seven of

the nine models, our results for lifetime remain basically

the same. Therefore, the lifetimes per tropical cyclone

are comparable among most models, with exception of

GISS_E and GSFC_E, which did not meet the criteria

because of the weak wind speeds of their storms (cf.

Table 3).

Table 3 also presents a crucial variable for studying

tropical cyclones, the lifetime maximum intensity. In

observations, the lifetime maximum intensity (LMI;

Elsner et al. 2008) has bimodal characteristics. For de-

riving the LMI, we used the 10-m wind speed or surface

wind speed depending on the availability of the data.1

The bimodal distribution arises from differences in LMI

and lifetime duration between the northernmost and

southernmost tropical cyclones. The southernmost trop-

ical cyclones tend to reach higher intensities, because

they stay longer over warm tropical waters with clima-

tologically low vertical wind shear (Kossin et al. 2010).

The first peak in LMI appears for the northernmost

tropical cyclones, which achieve an average of 34ms21

associated with shorter tracks and colder SSTs. The sec-

ond peak appears for the southernmost tropical cyclones,

which reach a higher LMI with a mean intensity of

44ms21, associated with longer tracks and warmer SSTs.

The explicit tropical cyclone simulations do not simulate

the bimodality of LMI of the northernmost and south-

ernmost tropical cyclones, the mean LMI is nearly the

same for all clusters and all the simulations. Furthermore,

the intensity of the tropical cyclones is underestimated by

most the models (CMCC_E, GISS_E, FSU_E, GFS_E,

GSFC_E,HG3A, andWRF_E). This is a common bias of

climate models (e.g., Yoshimura et al. 2006; Knutson

et al. 2007; LaRow et al. 2008;Walsh et al. 2013), because

of low model horizontal resolution and convective pa-

rameterization. EvenWRF_E (Table 3), with the highest

resolution (around 0.258), has a mean LMI weaker than

the observed LMI despite realistic peak intensities. The

two other models (CAM5_E and GFDL_E) tend to

overestimate the LMI, which could be due to their

higher horizontal resolution.

The destruction that tropical cyclones can potentially

cause can be estimated with a power dissipation index

(PDI; Emanuel 2005). This index combines the fre-

quency, duration, and intensity of the tropical cyclones.

The PDI is defined as the integral of the cube of the

maximum wind speed of the tropical cyclone over the

period considered. Table 3 presents the mean PDI per

tropical cyclone for each cluster. In the observations, the

mean PDI per tropical cyclone is higher for the south-

ernmost tropical cyclones with 4.0 3 1010m3 s22 for

cluster 3 and 2.8 3 1010m3 s22 for cluster 4, while for

clusters 1 and 2 it is approximately 1.0 3 1010m3 s22.

Cluster 3 has the highest PDI per tropical cyclone,

TABLE 4. African easterly wave activity averaged over the West

African continent (108–208N, 158W–08) and vertical wind shear

averaged over the east Atlantic basin (108–208N, 58–158W) for

a subset of explicit simulations and ERA-Interim only for the

African easterly wave activity. The calculations were realized over

the time period of each CTL runs.

Models

African easterly

wave activity (m2 s22)

Vertical wind

shear (m s21)

CMCC 7.7 12.0

GFS 19.7 7.9

GISS 0.4 11.5

ERA-Interim 7.3

1 Each center has its own technique for deriving these quantities,

which could potentially lead to small differences in LMI.
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because of the higher intensity and duration of tropical

cyclones in this cluster. None of the explicit simulations

replicates this preponderant role of the southernmost or

cluster 3 tropical cyclones, which is consistent with the

previous biases encountered in terms of intensity and

duration (Table 3). The mean PDI per tropical cyclone,

for all clusters, is underestimated by a large amount of

explicit simulations (CMCC_E, GISS_E, FSU_E, GFS_E,

GSFC_E, HG3A_E, and WRF_E). Their mean PDI goes

from 0.13 1010m3 s22 for GSFC_E and CMCC_E to 2.5

3 1010m3 s22 for FSU_E (Table 3), because of the low

intensity of these model tropical cyclones. For the other

models (CAM5_E and GFDL_E), the mean PDI is

overestimated compared to the observed values and goes

from 3.3 3 1010m3 s22 for GFDL_E to 8.8 3 1010m3 s22

for CAM5_Ebecause of an overestimate both in intensity

and mean duration of the simulated tropical cyclones.

c. Seasonality

The seasonality of cluster membership is presented in

Fig. 7 for the observations and the explicit simulations.

For observations (Fig. 7a), tropical cyclones of clusters

1 and 2 are prevalent during the early part of the North

Atlantic tropical cyclone season (May–July). During

this period, the environmental conditions are more fa-

vorable for their formation. During this period, ther-

modynamic conditions are usually not favorable in the

tropics but higher-latitude conditions are good for baro-

clinic initiation of storms (McTaggart-Cowan et al.

2008). For cluster 2 storms, the scenario is different:

midlatitude frontal systems can often deviate southward

into the Gulf of Mexico and provide the baroclinic

conditions that are favorable for cyclogenesis (Bracken

and Bosart 2000). Cluster 3 tropical cyclones are mainly

observed during the peak hurricane season (August–

September), because of their strong modulation by Af-

rican easterly waves (Landsea 1993), which peak at the

same time of the seasonal cycle. During the late season

(October–December), tropical cyclones from cluster

1 are predominant, because during those months envi-

ronmental conditions are more favorable for the de-

velopment of higher-latitude tropical cyclones. Cluster

4 storms present a broader seasonal cycle distribution

with no peak in contribution along the season.

Error bars in Fig. 7 provide an indication of the dif-

ferences between the simulations. The large error bars

indicate that the models are presenting very different

results from the observations and among them. Only

three models have tropical cyclones with a similar sea-

sonality as in observations, GFDL_E (Fig. 7d), GISS_E

(Fig. 7e), and HG3A_E (Fig. 7i). For these models, the

early and late seasons are well simulated with the pre-

dominance of clusters 1 and 2. However, in midseason

the peak of simulated cluster 3 tropical cyclones is un-

derestimated, withmost of the cluster 3 tropical cyclones

distributed throughout the tropical cyclone season. This

is a recurrent bias of the explicit simulations (cf. Fig. 7).

This is probably due to biases in the simulation of the

African easterly wave activity, because tropical cyclones

from this cluster are very much influenced by the ability

of models to simulate African easterly wave activity

(Kossin et al. 2010). Moreover, many models are not

able to reproduce the early and late season peaks from

clusters 1 and 2. For some models, this is due to a bias in

the proportion of tropical cyclones in a cluster. For ex-

ample, WRF_E (Fig. 7j) largely underestimates the

number of cluster 1 tropical cyclones, so it cannot simu-

late correctly the preponderance of this cluster in the

early and late seasons. This is due to a criterion in the

tracking algorithm: they do not take into account

the storms developing over 308N. GFS_E (Fig. 7g)

overestimates the proportion of cluster 3 tropical cy-

clones, which leads to an unrealistic preponderance of

cluster 3 tropical cyclones in thewhole season. The bias in

early and late seasons could also come from a misre-

presentation of the seasonality of large-scale variables.

The seasonality of clusters 1 and 2 is verymuch influenced

by the environmental conditions, as mentioned above.

Therefore, favorable conditions for cyclogenesis of the

northernmost tropical cyclones might not be happen-

ing at the same time in observations and simulations.

Furthermore, the large error bars in Fig. 7 put in evidence

the difficulties of the explicit simulations to represent the

seasonal cycle of cluster memberships, indicating the

large spread among the models.

This section shows that the North Atlantic tropical cy-

clones in the explicit high-resolution climate model simu-

lations present interesting results concerning cluster

separation, with some models having biases, for the

northernmost and/or southernmost tropical cyclones.

Many models underestimate crucial variables such as the

tropical cyclone intensity or PDI. Furthermore, none of the

models is able to simulate the strong differences between

the characteristics of the northernmost and southernmost

tropical cyclones or the importance of cluster 3 tropical

cyclones. In the next section, we will investigate and de-

termine if the downscaled tropical cyclones have the same

characteristics and biases as the explicitly simulated storms.

4. Climatology of clusters from downscaled
simulations

a. Tracks and genesis

Figure 8 presents the general climatology of the ob-

servations and the downscaled North Atlantic tropical

cyclone genesis by cluster membership (cf. Table 1). In
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FIG. 7. Seasonality of cluster membership for the explicit simulations. Contribution

of each cluster to the total number of tropical cyclones during the early [May–July

(MJJ)],middle [August–September (AS)], and late [October–December (OND)] parts

of the North Atlantic tropical cyclone season. Error bars indicate one standard de-

viation of the ensemble mean of the models.
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contrast to the explicit simulations (cf. Fig. 4), here only

the tropical cyclones in the control run (cf. section 2) are

shown, because the number of tropical cyclones gener-

ated by the downscalingmethodology is very large. Over

the North Atlantic basin, the number of tropical cy-

clones in downscaled simulations is from 2 to 6 times the

number of observed tropical cyclones. It should be

noted that, except for the large-scale fields, which come

for the climate models, the parameters used in the

downscaled simulations are the same for all cases. The

differences between the simulations are therefore re-

lated to the differences in large-scale fields. It should

also be mentioned that the comparison between explicit

and downscaled simulations is not completely fair be-

cause of some limitations in the detections of tropical

cyclones in the explicit simulations, as discussed in sec-

tion 2. Also, the downscaling technique is applied to four

models while the tracking techniques are applied to

a single model each time.

The comparison of observations (Figs. a) with the

downscaled simulations (Figs. 8b–e) reveals promising

results. Also, Table 5 summarizes various measures of

tropical cyclone activity for the four downscaled clusters

shown in Fig. 8. There is a good agreement between the

observed and simulated cluster separation in terms of

genesis locations (Fig. 8 and Table 5) as well as tracks

(right panels of Figs. 5 and 6) and landfall locations (not

shown). It is interesting to note from Figs. 5 and 6 that

explicit simulations with very different representation of

the tracks can give, at a first sight at least, very similar

tracks in a downscaled configuration. To avoid redun-

dancy, because the characteristics of the simulated clusters

are very similar to the observed and these were described

in the previous section, theywill not be repeated here. The

more realistic characteristics of the downscaled simula-

tions are interesting, it seems that the downscaling tech-

nique manages to overcome certain biases of the model

tropical cyclones analyzed the explicit simulations. For

example, while CMCC_E (Fig. 4c) and GISS_E (Fig. 4e)

cluster 3 tropical cyclones have a bias in genesis positions,

CMCC_D (Fig. 8c) and GISS_D (Fig. 8e) manage to

simulate realistically this type of tropical cyclones when

compared with observations (Fig. 1). Some of the differ-

ences between the explicit and downscaled simulations

could be due to the tracking technique employed but also

the fact that the downscaled model generates precursors

(seeds) that are not present in the explicit simulations. In

the case of GISS_E, the low level of African easterly

wave activity (cf. Table 3) does not provide precursors for

tropical cyclone activity in the eastern part of theAtlantic.

The random seeding of the downscaling technique is

probably compensating for this bias.

b. Storm characteristics

For each of the simulations, 8000 synthetic tropical

cyclones were generated over the globe. From these

8000 systems, the number of tropical cyclones that de-

velop over the North Atlantic basin varies greatly

among the models with 1315 systems for GFDL_D, 665

systems for GISS_D, 544 systems for CMCC_D, and 526

FIG. 8. As in Fig. 4, but for the downscaled simulations.
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systems for CAM5_D. This disparity in the number of

storm is coming from the differences in models’ large-

scale environmental conditions, which were used in the

downscaled simulations, with some environmental con-

ditions being more favorable to tropical cyclogenesis in

the Atlantic than others. For both the explicit and

downscaled simulations, GFDL has the largest number

of tropical cyclones, certainly because of favorable

large-scale conditions.

Table 5 also shows the percentage of tropical cyclones

in each cluster for observations and the four downscaled

models. The standard deviation of the mean number of

tropical cyclones per year was derived for each cluster

and each simulation (not shown). Except for cluster 1

storms of CAM5_D, the results showed a lower de-

viation from the mean in the downscaled simulation

compared to the explicit ones. This allowed us to do

some preliminary analysis in the proportions of the

TABLE 5. As in Table 3, but for the downscaled simulations for the control run. Percent values (in parentheses) represent the pro-

portions, within each cluster, of total tropical cyclone counts that reached a given intensity at some points of its lifetime ormade landfall at

least once.

CTL Dataset Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

No. of TC per year OBS 3.5 (28%) 2.9 (24%) 3.7 (30%) 2.3 (18%) 12.4

CAM5_D 6.8 (24%) 8.0 (28%) 5.5 (19%) 8.4 (29%) 28.7

CMCC_D 14.4 (27%) 15.8 (29%) 10.5 (20%) 12.8 (24%) 53.5

GFDL_D 24.8 (38%) 14.8 (22%) 12.1 (18%) 14.2 (22%) 65.9

GISS_D 8.5 (26%) 12.0 (37%) 4.7 (14%) 7.6 (23%) 32.8

No. of major hurricane per year OBS 0.3 (9%) 0.4 (11%) 1.3 (39%) 0.7 (41%) 2.7

CAM5_D 0.3 (6%) 0.8 (11%) 0.7 (15%) 1.7 (22%) 3.5

CMCC_D 1.0 (13%) 0.7 (10%) 0.9 (17%) 0.5 (8%) 3.1

GFDL_D 5.3 (21%) 1.1 (7%) 4.4 (37%) 3.8 (27%) 14.6

GISS_D 0.9 (11%) 1.4 (12%) 1.0 (21%) 2.5 (33%) 5.8

Mean position (latitude, longitude) OBS 278N, 648W 228N, 848W 148N, 378W 148N, 658W
CAM5_D 198N, 548W 148N, 718W 108N, 268W 118N, 448W
CMCC_D 238N, 568W 158N, 748W 108N, 278W 138N, 468W
GFDL_D 238N, 518W 208N, 738W 128N, 318W 138N, 548W
GISS_D 218N, 568W 158N, 748W 98N, 328W 138N, 468W

Mean duration per TC (days) OBS 6.2 5.6 10.6 8.4

CAM5_D 8.0 7.4 11.3 10.3

CMCC_D 8.3 7.3 13.6 9.9

GFDL_D 8.9 6.4 12.3 10.6

GISS_D 8.7 8.0 13.5 9.5

Mean LMI per TC (m s21) OBS 34 34 43 44

CAM5_D 34 33 36 39

CMCC_D 39 33 38 34

GFDL_D 41 31 42 41

GISS_D 37 34 40 42

Mean PDI per TC (1010 m3 s22) OBS 1.2 1.1 4.0 2.8

CAM5_D 1.2 1.1 2.2 2.7

CMCC_D 1.6 1.0 3.1 1.5

GFDL_D 2.2 0.9 3.7 2.9

GISS_D 1.6 1.3 3.1 2.6

Total PDI (1010 m3 s22) OBS 271 177 850 314

CAM5_D 143 173 221 420

CMCC_D 243 152 314 203

GFDL_D 1104 266 886 839

GISS_D 291 314 296 292

Landfalling TC count per year OBS 1.2 (34%) 2.6 (93%) 1.1 (33%) 1.5 (88%)

0 CAM5_D 2.2 (38%) 7.6 (99%) 1.3 (26%) 6.3 (81%)

CMCC_D 3.7 (50%) 7.8 (99%) 1.8 (36%) 5.7 (84%)

GFDL_D 10.2 (41%) 14 (95%) 4.6 (39%) 13.1 (92%)

GISS_D 4.2 (48%) 12.0 (99%) 2.3 (49%) 7.1 (95%)

Mean intensity at landfall (m s21) OBS 23 25 32 31

CAM5_D 27 24 28 31

CMCC_D 31 25 32 27

GFDL_D 32 26 33 32

GISS_D 28 25 34 32
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northernmost versus the southernmost tropical cy-

clones. The difference in standard deviation between

the explicit and downscaled simulations certainly

comes from the large number of tropical cyclones in

downscaled simulations, which provides a robust sam-

ple for our analysis. The observed slightly higher per-

centage of the northernmost tropical cyclones (52%)

compared to the southernmost tropical cyclones is also

present in the four downscaled models, with differ-

ences in the percentages: 63% for GISS_D, 60% for

GFDL_D, 56% for CMCC_D, and 52% for CAM5_D.

However, most of the downscaled models overestimate

the proportion of tropical cyclones in clusters 2 and 4

and underestimate the proportion of tropical cyclones

in clusters 1 and 3. The effect of this bias will be dis-

cussed below.

A clear advantage of the downscaled simulations is that

they are able to produce a realistic proportion of hurri-

canes (not shown here) and major hurricanes (Table 5).

In the observations the number of tropical cyclones that

become major hurricanes (Saffir–Simpson categories 3–

5) is substantially weighted toward the southernmost

systems (Table 5), with approximately 40% of tropical

cyclones in clusters 3 and 4 becoming major hurricanes,

while only 12% of storms in clusters 1 and 2 reach those

categories. Three of the four downscaled models have

a fairly realistic percentage of tropical cyclones in-

tensifying into major hurricanes (CAM5_D, GFDL_D,

and GISS_D), and these models simulate a higher rate of

intensification for the southernmost tropical cyclones.

However, for these models, the difference between the

northernmost and southernmost tropical cyclone inten-

sification rates is not as high as in observations. For ex-

ample, in the case of GFDL_D, 37% and 27% of storms

in clusters 3 and 4, respectively, reach major hurricane

intensity, in contrast with 21% and 7% of storms in

clusters 1 and 2, respectively (Table 5). For models

CAM5_D and GISS_D, the rate of tropical cyclones that

reach major hurricane intensity is highly underestimated,

and there is a much weaker contrast between the north-

ernmost and southernmost tropical cyclone intensifi-

cation rates. CMCC_D has reasonable rate of storms

reaching major hurricane intensity but has a similar per-

centage of major hurricanes among the four clusters,

therefore underestimating the percentage in all clusters

(10%–17%; see Table 5).

In observations, the majority of category 5 hurricanes

occur in clusters 3 and 4 (Kossin et al. 2010). This is also

the case for GFDL_D and GISS_D. Of the 39 (12) cat-

egory 5 hurricanes that have been simulated byGFDL_D

(GISS_D), 32 (8) are in clusters 3 and 4. The number of

category 5 hurricanes simulated in the other two models

is too low to be analyzed here.

In observations and downscaled simulations, the

southernmost tropical cyclones are less frequent but have

a longer lifetime than the northernmost ones (Table 5)

For the downscaled simulations, the mean lifetime varies

between 6.4 and 8.9 days for the northernmost tropical

cyclones and between 9.5 to 13.6 days for the southern-

most tropical cyclones. However, while the downscaled

simulations capture the meridional difference in lifetime

among the clusters, they overestimate the mean lifetime

duration of all tropical cyclones. This may be partly be-

cause the downscaling technique does include the early

stages of extratropical transition but does not reclassify

the storms as extratropical.

As mentioned above, in observations the LMI follows

a bimodal distribution with a higher mean intensity for

the southernmost tropical cyclones than in the north-

ernmost ones. All the downscaledmodels, with exception

of CMCC_D, manage to reproduce this characteristic.

CAM5_D, GFDL_D, and GISS_D have a mean LMI for

the northernmost tropical cyclones between 34 and

36ms21, while for the southernmost cyclones it varies

between 38 and 42ms21. Even if there is a more pro-

nounced contrast in the observations, the downscaled

models are able to simulate the differences in intensity

between the northernmost and southernmost tropical

cyclones, which is a very encouraging result.

Table 5 presents themean PDI per tropical cyclone for

each cluster. In observations, the mean PDI is clearly

higher for the southernmost tropical cyclones (clusters 3

and 4) compared with the northernmost ones (clusters 1

and 2). All the downscaled models also reproduce this

difference (Table 5). However, the downscaled models

tend to underestimate the mean PDI of the southernmost

tropical cyclones. Although in the simulations, the mean

PDI varies between 2.2 3 1010 (CAM5_D) and 3.7 3
1010m3 s22 (GFDL_D) and for cluster 4 it varies between

1.53 1010 (CMCC_D) and 2.93 1010m3 s22 (GFDL_D),

in observations the mean PDI values are 4.0 and 2.8 3
1010m3 s22, respectively. The mean PDI per tropical cy-

clone depends on the tropical cyclone duration and in-

tensity. Because all the downscaled models overestimate

the storm duration and underestimate the storm intensity,

the bias in mean PDI per storm can be attributed to the

bias in storm intensity (Table 5). In observations, cluster 3

tropical cyclones have the highest value of mean PDI

(Table 5) and hence are potentiallymore dangerouswhen

reaching the coasts. Except for CAM5_D, the down-

scaledmodels reproduce the highermeanPDI of cluster 3

tropical cyclones (Table 5). This is an important result,

because it is fundamental to be able to simulate well the

characteristics of the most potentially destructive storms.

Similarly, for the observed total PDI (Table 5), cluster

3 has a much higher value than the others, reaching
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850 3 1010m3 s22 with the second highest value (314 3
1010m3 s22) occurring in cluster 4. Unfortunately, except

CMCC_D, none of the downscaled models reproduces

this characteristic, because of an underestimation of the

intensity and wrong proportion of tropical cyclones per

cluster (Table 5). For GFDL_D, cluster 1 presents the

highest total PDI, overestimating of intensity and pro-

portion (Table 5) of the total PDI in that cluster. For

CAM5_D and GISS_D, clusters 4 and 2 are respectively

the ones with the highest total PDI among all clusters,

overestimating the proportion of tropical cyclones in

those clusters.

c. Landfalls

Besides specific intensity, frequency and duration

characteristics, Kossin et al. (2010) showed that ob-

served clusters present different landfall properties. To

obtain the points of landfall for eachmodel, we first used

a very high-resolution land–sea mask based on obser-

vational data in order to include all small islands. Then

we interpolated each track from 6-hourly positions to

15-min increments using cubic splines. Finally, for each

interpolated track, whenever the storm location is over

land—and on the previous time step the storm was over

water—this is defined as a landfall. Characteristics of

landfalls are very important in climate studies, as land-

falling storms can impact the coastal population. There-

fore, the ability of climate models to reproduce landfall

distribution and robust projections of changes in landfall

frequency is essential for impact studies.

Table 5 presents the number and proportion of land-

falls in observations and downscaled simulations for

each cluster. The downscaled simulations have very re-

alistic landfall proportions compared to observations,

with most of the tropical cyclones in clusters 2 and 4

making landfall at least once, while the landfall pro-

portion in clusters 1 and 3 is much lower because of the

eastern genesis location of the last two clusters.

The clusters differ not only in landfall proportions but

also more importantly on the geographic position of their

landfalls (as shown in observations in right panels of Fig. 1).

Observed and downscaled tropical cyclones in cluster 1

make landfall along the eastern U.S. and Canada coasts.

Cluster 2 landfalls are largely confined to the Gulf of

Mexico, westernCaribbean, andAntilles, whereas cluster 3

landfalls occur over the easternU.S. andCanada coasts and

the Antilles. Finally, cluster 4 has the landfalls in the An-

tilles and theMexico and Central America coasts. There is

a much higher proportion of tracks making landfall in the

eastern U.S. and Canada coasts in the downscaled models

compared to the observations for all the clusters.

Another important characteristic to consider is the

ability of models to simulate the intensity of storms at

landfall, which is shown in Table 5 for observations and

downscaled models for each cluster. The southernmost

tropical cyclones have higher intensity at landfall for the

observations and in two of the downscaled models

(CAM5_D and GISS_D). In contrast, CMCC_D and

GFDL_D present very similar intensities at landfall for

all clusters. The reasons for these differences should be

addressed in a future study.

d. Seasonality

The seasonality of downscaled simulations for all

storms in the basin is very similar to observations (not

shown). However, as shown in Fig. 9, none of the

downscaled models is able to reproduce the observed

seasonal distribution per cluster. Also, as in Fig. 7, the

large error bars show that the models have very large

spread among them. For GFDL_D (Fig. 9c) andGISS_D

(Fig. 9d), one cluster is prevalent: cluster 1 is highly

dominant for GFDL_D in the early and the middle part

of the season, while for GISS_D cluster 2 has larger

values over the whole season. In those two cases, the

dominant cluster has also a largely overestimated pro-

portion (Table 5). For CAM5_D (Fig. 9a) and CMCC_D

(Fig. 9b), there is a different leading cluster in each part of

the season, but these are different from observations.

It is interesting to note that, except CAM5_D, the

seasonal cycle of explicit versus downscaled simulations

is completely different (cf. Figs. 7b and 9a). Moreover,

while GFDL_E had a realistic seasonal cycle per cluster

(Fig. 7d), when using the downscaling technique, the

seasonal cycle of GFDL_D is degraded (Fig. 9c). The

biases of this downscaled model cannot be attributed to

the large-scale conditions as these two simulations share

the same large-scale environment. The seeding process,

as well as the seeding timing, could be a possible ex-

planation for the differences between the seasonality in

explicit and downscaled simulations. As mentioned

above, one drawback of the downscaling method is that

there is no link with the timing of the African easterly

waves; this could be one of reasons for seasonality biases

of the downscaled simulations, especially in the case of

the nonrealistic timing of genesis of cluster 3 storm

genesis. This result clearly shows a limitation of the

downscaling technique that should be further improved.

In summary, the downscaled models generally simu-

late better the cluster separation and characteristics,

such as duration, intensity, PDI, and landfalls frequency,

when compared with explicit models; in particular, the

storms reach the intensity of hurricanes and major hur-

ricanes. However, there are some biases remaining. For

example, some of the downscaled models are not able to

reproduce the bimodal distribution of intensity between

the northernmost and southernmost tropical cyclones
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and all downscaled models had problems simulating the

seasonality of cluster memberships.

5. Future changes in North Atlantic tracks

a. Frequency

Because of the low number of tropical cyclones in

most of the explicit models, future changes in tropical

cyclone activity are only examined for the downscaled

models. The histograms in Fig. 10 show the difference in

the number of tropical cyclones per year for each of the

three perturbation experiments (p2K 5 2-K increase in

SST, 2CO25 23CO2, and p2K2CO25 2-K increase in

SST and 23 CO2). The results are shown for the cluster

memberships, as well as the total number of tropical

cyclones. Error bars indicate the 90% confidence in-

terval on the differences. A Student’s t test was realized

in order to get the confidence intervals.

The changes in the total number of tropical cyclones

per year show large differences among the four down-

scaled models, as well as the three idealized scenarios.

CAM5_D and CMCC_D both show an increase of the

total number of tropical cyclone per year, for all the

scenarios. One reason for that might be that, if the same

seeding rate is kept between the present and future

simulations, under future conditions the environment

might more favorable so the number of tropical cyclones

might get higher. However, for CAM5_D, the results are

not statistically significant. In the case of CMCC_D, there

is a major significant increase in tropical cyclone fre-

quency for all scenarios: 145% (p2K; Fig. 10a), 127%

(2CO2; Fig. 10b), and 122% (p2K2CO2; Fig. 10c), re-

spectively. In contrast, the other downscaled models

tend to present weaker changes and often differ in sign.

For the p2K scenario (Fig. 10a), GFDL_D andGISS_D

show significant decreases in frequency of tropical cy-

clones per year with 29% and 26%, respectively. For

the 2CO2 (Fig. 10b) and p2K2CO2 (Fig. 10c) scenarios,

GFDL_D and GISS_D also present decreases in trop-

ical cyclone frequency; however, changes in GFDL_D

are not statistically significant. GISS_D has small de-

creases of number of tropical cyclones per year with

23% for 2CO2 and 26% for p2K2CO2. Yoshimura

and Sugi (2005) showed that frequency changes in the

FIG. 9. As in Fig. 7, but for the downscaled simulations.
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p2K2CO2 scenario are mainly coming from the in-

crease in CO2 concentration. On the other hand, Held

and Zhao (2011) showed similar levels of contribution

from SST and CO2 in the reduction of tropical cyclone

frequency. However, these two studies were per-

formed at a global scale, so they do not necessarily

apply to the North Atlantic basin. In our case, it is not

really easy to identify the proportions in the contribu-

tion of SST or CO2 to the p2K2CO2 scenario. More

details on the different roles of SST warming and the

CO2 increase in future changes in tropical cyclone ac-

tivity are currently being investigated by Zhao et al.

(2013), as part of the effort of the U.S. CLIVAR

Hurricane Working Group.

Regarding future changes of the cluster memberships,

for all the downscaled simulations and nearly all the

scenarios, the main changes in tropical cyclone fre-

quency come from the northernmost tropical cyclones

(clusters 1 and 2). More concretely, for GFDL_D and

GISS_D this means a decrease of the number of tropical

cyclones over the western part of the North Atlantic

basin, a pattern that has already been observed in sev-

eral previous studies (Chauvin et al. 2006; Murakami

andWang 2010; Caron et al. 2011; Zhao andHeld 2012).

These studies also project an increase of activity over the

eastern Atlantic, which is not present in GFDL_D and

GISS_D. On the other hand, CAM5_D and CMCC_D

have an increase in the northernmost tropical cyclones.

In the case of CMCC_D, the increase is also occurring

for the southernmost tropical cyclones: that is, an in-

crease of tropical cyclones over the entire North At-

lantic basin, which agrees with other studies, such as

Oouchi et al. (2006) and Emanuel (2013), and a few of

the models examined in Camargo (2013).

b. Intensity

Figure 11 shows the fraction changes in LMI. Similar

to future frequency changes (section 5a), the changes in

intensity (LMI) depend on the model and the scenario

examined. The downscaled models show a robust in-

crease of the intensity of tropical cyclones in the p2K

scenario for all models, but with different rates (Fig. 11a).

GFDL_D and GISS_D have a weak increase (under

3ms21), while for CAM5_D and CMCC_D the increase

is stronger, reaching approximately 3 and 5ms21, re-

spectively, and is statistically significant. In contrast for

FIG. 10. Difference in number of tropical cyclones per

year for each cluster membership and the total number

of tropical cyclones, between each perturbation experi-

ment (p2K, 2xCO2, and both) and the control experi-

ment. These results are presented for the downscaled

simulations. Error bars represent 90% confidence in-

terval and were based on a Student’s t test.
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the 2CO2 (Fig. 11b) and p2K2CO2 (Fig. 11c) scenarios,

the models show significant but incoherent results. While

three of the models (CAM5_D, GFDL_D, and GISS_D)

show a moderate decrease in intensity (,25ms21),

CMCC_D has an increase of 7ms21 for the 2CO2 sce-

nario. In the p2K2CO2 scenario, GFDL_D has a moder-

ate decrease, GISS_D has no changes, and CAM5_D and

CMCC_D have an increase in intensity: ;5 and

10m s21, respectively. Held and Zhao (2011) found

that the increase in the average intensity of tropical

cyclones is mostly due to the SST warming. In our case,

not all the simulations show an increase in intensity and

it is not possible to identify which factor is the most

important between SST and CO2. Indeed, the results

are hardly significant for three of the models when the

effects of SST and CO2 are examined individually. In

the case of CMCC_D, the results are significant but

very similar between the two scenarios, which again

does not let us identify which parameter is the most

important for the intensity changes. An important

point is that, in contrast to the tropical cyclone fre-

quency changes, it is not possible to identify which

clusters are responsible for the changes in intensity

changes: that is, all the simulations the changes are

distributed among at least three clusters.

6. Summary and discussion

In this paper, we analyzed the simulations of the U.S.

CLIVAR Hurricane Working Group in order to study

the ability of explicit and downscaled models to repre-

sent the tropical cyclone cluster tracks over the North

Atlantic basin. As mentioned earlier, this analysis is

a tentative study as we were facing some limitations be-

cause of the differences in tracking algorithms. Thus, the

results should be considered preliminary. The results

show, first, the examination of the climatologies of the

tropical cyclone clusters in nine different climate models.

With the exception of GFDL_E, the explicit simulations

are not able to reproduce all the cluster types, butmost of

them simulate realistically at least three of the four

clusters. Many models have problems simulating clusters

3 and 4 storms: that is, the southernmost tropical cy-

clones. This bias can be directly related to the realism of

the African easterly wave activity for one model and an

unfavorable environment created by high values of

FIG. 11. As in Fig. 10, but for changes in LMI (m s21).
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vertical wind shear for a few specificmodels. This can also

be due to the fact that models often have an insufficient

representation of the storms in the tropics so the peak in

intensity is not reached until they reach higher latitudes.

The climatological clusters of the storms explicitly

generated by climatemodels show strong biases in storm

intensity and mean PDI per storm. The different char-

acteristics in these variables between the northernmost

(clusters 1 and 2) and southernmost observed tropical

cyclones (clusters 3 and 4) (Kossin et al. 2010) are not

present in the explicit simulations. Furthermore, the

intensity of the tropical cyclones is still underestimated

in many models confirming the need for high-resolution

models for studying tropical cyclone activity, though this

is not sufficient, as some high-resolution models still

cannot simulate the most intense storms.

In the second part of this paper, the downscaling

technique of Emanuel et al. (2008) was applied to the

output of four climate models from the previous section.

The results show that, apart from the seasonality, the

downscaled models are better able to reproduce the ob-

served characteristics compared to the explicit model

results. However, the explicit models have limitations,

especially in the way the tropical cyclones are detected.

The downscaledmodels have a realistic representation of

the tracks, genesis, and landfalls patterns. They also

manage to reproduce many of the characteristics of

cluster memberships, such as a distinction between the

northernmost and southernmost tropical cyclones in

terms of mean duration, intensity, and PDI. In addition,

most of the downscaled models present a realistic pro-

portion of landfalls as well as major (categories 3–5) and

category 5 hurricanes. Improvements can still bemade on

the downscaled models regarding seasonality, as the

seasonal cycle of individual clusters is not accurately

simulated. For example, modifying the seeding technique

taking in account the seasonality ofAfrican easterly wave

activity could lead to significant improvements.

It should be noted that the models examined here are

forced with climatological SST, so they do not have any

information on interannual variability, in contrast to the

observations. This fact could potentially explain some of

the differences between the simulations and the obser-

vations encountered in this paper. Kossin et al. (2010)

demonstrated that factors such as ENSO, the AMM, or

the North Atlantic Oscillation (NAO) highly modulate

the cluster membership.

The last part of the paper aims to study the impacts of

warming of SST and increase in CO2 rate on the char-

acteristics of the tropical cyclones clusters. The results

are not robust among the four downscaled simulations.

Two of the four downscaled simulations show a decrease

in tropical cyclone frequency in the p2K2CO2 scenario,

with only one presenting significant increase, while the

two others show a small increase. Contrarily to previous

studies (Yoshimura and Sugi 2005; Held and Zhao 2011),

it is not possible to identify the proportion of the contri-

butions of the p2K and 2CO2 scenarios to future changes.

However, models are in agreement that the frequency

changes are due to the northernmost tropical cyclones.

Concerning the intensity, all the models agree on an in-

crease for the scenario with a warming of SST, with most

models showing a significant increase of intensity. For the

two other scenarios, the four simulations do not agree,

showing different signs of intensity changes, and it is not

possible to identify specific clusters responsible for these

changes. The only differences among the downscaled

models are in the large-scale environmental fields, which

lead to very different projections in tropical cyclone fre-

quency changes. These large differences in projections are

representative of howdifficult it is to assess future changes

of tropical cyclone activity, especially in regional scales,

and show that we need to be very careful when reaching

conclusions analyzing a single climate model, pointing to

the advantages of multimodel intercomparison projects,

as well as the need for ensemble simulations.

In the future, it would be important to repeat this

analysis using a more comparable dataset, in which

a common tracking algorithm is used. Alternatively, the

sensitivity to various tracking algorithms could be tested

on a common data such as a reanalysis dataset.
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APPENDIX

Description of the Detection of Tropical Cyclones in
Simulations

For the downscaled simulations, the seeds are not

considered to form tropical cyclones unless they develop

winds of at least 21ms21.
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For the explicit simulations, the tracking algorithms

employed in this study are described for each model

here. Table A1 also presents the variables and the

thresholds chosen for each technique.

For CAM5_E, the tracking algorithm used is de-

scribed in Knutson et al. (2007). The following criteria

were employed:

(i) A local relative vorticity maximum at 850hPa

exceeds 1.6 3 1024 s21.

(ii) The surface pressure increases by at least 4hPa from

the storm center within a radius of 58. The closest

localminimum in sea level pressurewithin a distance

of 28 latitude or longitude from the vorticity maxi-

mum is defined as the center of the storm.

(iii) The distance of thewarm-core center from the storm

center does not exceed 28. The temperature decreases

by at least 0.88C in all directions from the warm-core

center within a distance of 58. The closest local

maximum in temperature averaged between 300

and 500hPa is defined as the center of the warm core.

Maxima and minima are located, and gradients are

evaluated using bicubic splines, which provide higher

precision than the model resolution.

For WRF_E, the tracking algorithm follows the one

from Walsh (1997). The criteria we used include the

following:

(i) a minimum 850-hPa relative vorticity of 2 3
1024 s21;

(ii) A closed minimum in sea level pressure within 2.58
of the point identified in (i);

(iii) 10-m wind speed of at least 17.5m s21;

(iv) warm-core criteria described in Walsh (1997);

(v) mean wind speed around the center of the storm

(2.58 on each side) at 850 hPa must be higher than

at 300hPa;

(vi) tropical cyclone exists for at least 2 days; and

(vii) tropical cyclone origin is south of 308N.

GFDL_E and GFS_E follow the same algorithm as

Zhao et al. (2009), which identifies tropical cyclones by

locating grid points meeting the following criteria:

(i) 3.53 1025 s21 within a 68 3 68 latitude/longitude box;
(ii) a local minimum of sea level pressure within 28

latitude/longitude from the vorticity maximum; and

(iii) a local maximum anomaly in the temperature aver-

aged between 300 and 500hPa located within 28 of
SLP minimum, where the EMPERATUREmust be

at least 18Cwarmer than the surrounding local mean.

For the simulations from HG3A_E, the tracking algo-

rithm follows previous studies (Hodges 1999, Bengtsson

et al. 2007), as explained in Strachan et al. (2013):

(i) Maxima in 850 hPa spectrally filtered to T42 vor-

ticity greater than 0.5 3 1025 s21 are tracked.

(ii) Lifetime is greater than 2 days.

(iii) T63 relative vorticity at 850hPa must be superior

or equal to 6 3 1025 s21 during track obtained

above.

(iv) Positive T63 vorticity center must exist at 850, 500,

300, and 200hPa.

(v) There must be a reduction of at least 6 3 1025 s21

in vorticity between 850 and 200 hPa as evidence of

a warm core.

(vi) There must be a reduction in T63 vorticity with

height checked between each pair of 850-, 500-,

300-, and 200-hPa levels.

(vii) Conditions iii–vi must be attained for at least 1 day.

For CMCC_E, their tracking scheme has been de-

veloped based on the one developed by Walsh (1997).

Six criteria are defined as follows:

TABLE A1. Description of the fields and levels used in the tracking

algorithms.

Model/tracking

Scheme

Variables and

levels selected

CAM5_E/Knutson

et al. (2007)

Relative vorticity: 850 hPa

Surface pressure

Temperature: 300 and 500 hPa

WRF_E/Walsh (1997) Relative vorticity: 850 hPa

Surface pressure

Wind speed: 10m, 850 hPa, and

300 hPa

Temperature: 700, 500, and 300 hPa

GFDL_E /GFS_E/Zhao

et al. (2009)

Relative vorticity: 850 hPa

Surface pressure

Temperature: 300 and 500 hPa

HG3A_E/Strachan

et al. (2013)

T42 relative vorticity: 850 hPa

T63 vorticity: 850, 500, 300, and

200 hPa

CMCC_E/Zhao et al.

(2009)

Relative vorticity: 850 hPa

Surface pressure

Wind velocity: 300 and 850 hPa

Temperature: 700, 500, and 300 hPa

GSFC_E/Vitart et al.

(2003)

Relative vorticity: 850 hPa

Surface pressure

Temperature levels: 500 and 200 hPa

GISS_E/Camargo and

Zebiak (2002)

Relative vorticity: 850 hPa

Surface pressure

Temperature: 850, 700, 500, and

300 hPa

Wind speed: 850 and 300 hPa

FSU_E/LaRow et al.

(2008)

Relative vorticity: 850 hPa

Surface pressure

Temperature: 500 and 200 hPa

Horn et al. (2013) Absolute vorticity: 850 hPa

Surface pressure

Wind speed: 10m, 850 hPa, and

300 hPa

Temperature: 300 hPa
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(i) Relative vorticity at 850hPa is larger than 1.0 3
1025 s21.

(ii) There is a relative surface pressureminimum, and the

surface pressure anomaly, compared to a surrounding

area with a radius of 350km, is larger than 2hPa.

(iii) In a region with a radius of 350 km around the grid

point considered, there is a grid point where the

maximum surface wind velocity is larger than

15.5m s21.

(iv) Wind velocity at 850hPa is larger than wind

velocity at 300 hPa.

(v) The sum of temperature anomalies at 700, 500, and

300 hPa is larger than 1K, where anomalies are

defined as the deviation from a spatial mean

computed over a region with a radius of 350 km.

(vi) The above-mentioned conditions persist for at least

24 h (corresponding to four time steps of the model

output).

For GSFC_E, the tracking scheme is similar to one

from Vitart et al. (2003). The criteria are the defined as

follows:

(i) Local relative vorticity maximum is greater than

3.5 3 1025 s21 at 850-hPa level.

(ii) Warm core: From the center of the tropical cy-

clone, the temperature must decrease by at least

6K in all directions within a distance of 48.
(iii) The distance between the tropical cyclone center

and the center of the warm core must not exceed

28 longitude and latitude.

(iv) The minimum sea level pressure defines the center

of the tropical cyclone andmust exist within 28 3 28
radius of the vorticity maximum.

For GISS_E, the tracking scheme of Camargo and

Zebiak (2002) has been used. Based on the analysis of

the joint probability distribution functions obtained in the

850-hPa relative vorticity, the 850–300-hPa anomalous

integrated temperature, and the surface wind speed for

climate models, the following model-dependent criteria

are chosen:

(i) 850-hPa relative vorticity at least twice the stan-

dard deviation of the vorticity;

(ii) 830–300-hPa anomalous integrated temperature

threshold greater than or equal to the standard

deviation calculated over only those cases where

there is a warm core; and

(iii) surface wind speed greater than or equal to the

global average wind speed (over ocean only) plus

the standard deviation in the relevant basin.

The scheme also imposes the followingmode-independent

criteria:

(i) a local minimum in mean sea level pressure;

(ii) a positive local temperature only at 850, 700, 500,

and 300 hPa;

(iii) a larger local temperature anomaly at 850hPa than

at 300 hPa; and

(iv) higher mean wind speeds at 850 hPa than at

300 hPa.

Successive detections are connected into tracks if they

are within 58 of each other. Tracks of at least 1.5 days are

considered to be tropical cyclones. These tracks are then

extended forward and backward in time by tracking the

vorticity maximum while the absolute value exceeds

a relaxed vorticity threshold. This is intended to achieve

more realistic track lengths.

The scheme for FSU_E is described in LaRow et al.

(2008) and identifies tropical cyclones by locating grid

points meeting the following criteria:

(i) 1.0 3 1024 s21 at 850 hPa within a 48 3 48 latitude/
longitude box;

(ii) a local minimum of sea level pressure within 28
latitude/longitude from the vorticity maximum; and

(iii) a local maximum anomaly in the temperature

averaged between 200 and 500hPa located within

28 of sea level pressure minimum, where tempera-

ture must be at least 38C warmer than the sur-

rounding local mean.

For testing the sensitivity of the cluster analysis to the

tracking techniques, we also used the tracking algorithm of

the modified Commonwealth Scientific and Industrial

Research Organization (CSIRO) tracking scheme (Walsh

et al. 2007; Horn et al. 2013). The scheme uses the fol-

lowing criteria to locate tropical cyclones:

(i) an absolute value of 850-hPa vorticity greater than

1025 s21;

(ii) a closed pressure minimum within a distance in both

the x and ydirections of 350km fromapoint satisfying

condition1 (distance chosenempirically togiveagood

geographical association between vorticity maxima

and pressure minima), where this minimum pressure

is taken as the center of the storm;

(iii) a mean wind speed in the region 700 km 3 700km

around the center of the storm at 850 hPa greater

than at 300 hPa;

(iv) a temperature anomaly at the center of the storm at

300 hPa greater than zero; and

(v) maximum 10-mwind speeds exceeding a resolution-

dependent value as specified in Walsh et al.

(2007).

Detections are allowed only over ocean, based on to-

pography fields degraded to model resolution, unless
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previous detection exists within a resolution-dependent

distance. These detections are then linked into tracks by

associating consecutive detections within 68 of each

other. Tracks lasting less than 24h are excluded. No

latitude restriction is imposed and the tropical cyclones

are instead partitioned from extratropical storms using

the separation in the latitudinal distribution of their

genesis points caused by the extratropical ridges in both

hemispheres. This is one point of departure from the

original CSIRO scheme; another is the removal of

a computationally demanding warm-core check that was

found to be unnecessary at the higher resolutions used in

the CLIVAR experiments (Horn et al. 2013).
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