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Abstract

The risk of extreme coastal flooding to Bangladesh’s low-lying and densely pop-
ulated coastal regions, already vulnerable to tropical cyclones, remains poorly
quantified under a warming climate. Here, using a statistical-physical down-
scaling approach, our projections under the IPCC SSP5-8.5 scenario show that
Bangladesh’s 100-year coastal flood will likely intensify from 4.15m to 6.60m
by the end of the 21st century. Meghna and northern Chattogram regions are
the most vulnerable. The severity of coastal flooding season will broaden sig-
nificantly, amplifying the strongest during the late monsoon season. Substantial
increases are projected to seasonal coastal flood event frequencies, with a manifold
increase in back-to-back flooding events in the post-monsoon season. We project
that the frequency of coastal flooding from destructive cyclones like Bhola and
Gorky will increase significantly. Our study heightens the urgency for attention
and investment to enhance coastal resilience and mitigate risk in Bangladesh.
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1 Introduction

Tropical cyclone (TC) induced coastal floods rank among the deadliest and costliest
worldwide catastrophes [1]. The Bay of Bengal (BoB), located in the northeastern part
of the Indian Ocean, has consistently experienced some of the most destructive coastal
floods in history. Although it accounts for only 5-6 percent of global TC activity,
approximately 80-90 percent of global TC fatalities occur in this basin [2, 3]. The BoB’s
funnel-shaped and shallow northern region naturally amplifies the water level, raising
it to 10 meters above mean sea level when strong TCs strike [4, 5]. Six TCs in BoB
have caused more than 140, 000 fatalities [1] primarily due to coastal flood inundating
the low-lying (less than 5 m above mean sea level) densely populated mega-delta [6]
(with a population density of 6, 734 per km2).

Bangladesh is a downstream riparian state for three major trans-Himalayan rivers,
namely the Ganges, the Brahmaputra, and the Meghna, and is fringed by the BoB.
Due to this location, the country is prone to coastal floods caused by intense TCs. It
has a history of devastation caused by TCs, with 14 such events resulting in the loss of
over 10,000 lives from 1760 to 2020 [7]. The latest of these was cyclone Gorky in April
1991, which claimed at least 13,000 lives. Sitting on the frontline in the battle against
coastal floods, the country has since emerged as an international champion [8], imple-
menting proactive policies to improve its resilience significantly. The government has
improved its early warning system, increasing access to a network of cyclone shelters
and evacuation roads, improving polders, and implementing community-based cyclone
preparedness programs [9]. The results have yielded impressive results, reducing mor-
tality from TCs by up to a hundred-fold. In May 2020, Super Cyclone Amphan hit the
western coast of Bangladesh, resulting in a limited death toll of 128 despite inducing
a 5 m storm surge [10].

However, a warming climate likely poses a significant threat to Bangladesh. The
older embankment systems, which consist of 139 polders covering 1.2 million hectares
of land, were built to protect about 8 million people from flooding and ensure their
safety and livelihoods. However, if Sea Level Rise (SLR) and extreme TCs become more
frequent and destructive due to climate change, the exposed infrastructure and vulner-
able populations will be at greater risk. Increased sedimentation, elevating riverbeds,
and land subsidence within polders increase embankment stress exposure to even
low-intensity TCs. Furthermore, rising coastal water levels, reduced upstream river
discharge, and polder-induced tidal amplification may worsen salinity intrusion. If the
cyclone season expands into the monsoon season, the combined impact of coastal and
inland flooding could devastate agriculture and water supply, further straining the
vulnerable population.

The consequences faced by coastal Bangladesh are severe and often appear irre-
versible. The sustainability architecture of Bangladesh seems fragile in light of the
emerging climate hazard. Risk-informed solutions are needed, and ones developed here
could apply to many lower-income coastal countries worldwide. To make informed
decisions, it is necessary to quantify the impact of climate change accurately. Focus-
ing on TC-induced coastal flood risk, achieving this requires efficiently downscaling
TCs to establish climatologies in future climate scenarios. This is challenging due to
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the limited observational record of cyclones passing through Bangladesh and the enor-
mous computational expense of running high-resolution numerical climate models. A
previous study evaluated coastal flood risks using a synthetic simulation-based frame-
work in Bangladesh [11]. However, this assessment is limited to the current climate.
As of this writing, few TC-risk studies for Bangladesh under a changing climate exist.

Here, using a statistical-physical modeling framework to explicitly downscale TCs,
we physically simulate coastal flooding for entire coastal Bangladesh under different
projected climates [12–14]. Although other areas utilizing similar frameworks [15–18]
have been studied, none has been established for BoB. Our approach investigates the
effects of climate change (including TC climatology change and probabilistic SLR)
utilizing a downscaled track set [7], which projects a ten-fold increase in the likelihood
of extreme TC winds (exceeding 150 knots) by the end of the century under the
high greenhouse gas emission scenario. The simulated synthetic TCs drive a validated
hydrodynamic model [19] to simulate storm surges, including tides, using updated
higher-accuracy regional bathymetry [20]. We estimate the return periods of coastal
floods in current and future climates at stations along Bangladesh’s coastline. We
investigate the relative contribution of TC climatology change and SLR to coastal
flooding across scales. We analyze the frequency that storms similar to the historically
deadliest TC-induced coastal floods (Bhola and Gorky, tracks and fatalities can be
found in Figure 1) might have in a warming climate. We further study seasonal shifts
in flood severity and frequency.

Although some scenario uncertainty exists, under IPCC6 SSP5.85, our results are
somewhat alarming. They provide important insight to help Bangladesh contend with
climate change’s mounting impacts on its coastal communities. To summarize our
findings:

1. A national-scale assessment shows that the 100-year coastal flood in Bangladesh
will likely intensify from the present 4.15 m (Confidence Interval [CI]: 2.63 m to 5.69
m. Hereafter, CI represents the confidence interval from 0.1 to 0.9 quantile) to 6.60
m (CI: 4.33 m to 9.68 m) by the end of the 21st century under CMIP6 SSP5-8.5.

2. Regional and station-level assessments show that Meghna and northern Chat-
togram are highly vulnerable. Under the warming climate scenario of CMIP6
SSP5-8.5, 100-year coastal flooding at the north part of Chattogram (simulated for
virtual location named ”station Navi” with ID=31 and marked by purple square
in Figure ??) will increase from the present 6.51 m (CI: 6.13 m, 6.89 m) to future
10.30 m (CI: 8.27 m, 12.45 m).

3. TC climatology, including frequency and intensity, amplifies more under CMIP6
SSP5-8.5 than under CMIP5 RCP8.5. Consequently, the increasing coastal flooding
is dominated by TC climatology change under CMIP6 SSP5-8.5; specifically, TC
climatology change contributes on average 71.6% (in the Ganges), 71.9% (in the
Meghna), 63.2% (in the Chattogram) to the increasing coastal flooding for the
100-year return period.

4. Under CMIP6 SSP5-8.5, the return period of two historically deadliest coastal
floods caused by TC Bhola (9.10 m) and Gorky (7.30 m) will decrease from present
623 years (CI: years 487 to 764) and 494 years (CI: years 396 to 597) to a future 47-
year (CI: years 21 to 156) and 25-year (CI: years 16 to 108), respectively. In other
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words, the frequency of storms like these extreme events increases by 13.3 (changing
from 1 in 623 to 1 in 47) and 19.8 (varying from 1 in 494 to 1 in 25), respectively.

5. Climate change significantly broadens the TC active season, overlapping into the
monsoon season robustly at multiple levels of severity. The cascading effect of
inland and coastal flood risk in August poses a significant new danger. Seasonal
coastal flood frequency significantly increases in October, leading to a higher like-
lihood of back-to-back coastal flooding due to the decreased time interval between
occurrences.

Fig. 1 Maps of historically deadliest TCs that made landfall in Bangladesh. A, Joint
Typhoon Warning Center (JTWC) TC tracks (marked magenta with arrow) of Bhola (1970), Gorky
(1991), and Sidr (2007) that originate in the Bay of Bengal and move northward, striking Bangladesh
(marked cyan). B, zooming into coastal Bangladesh to display geographical locations where the
three TCs made landfall and 54 water level “stations” located in Southwest Bangladesh (Ganges
Tidal Plain, marked yellow), Middle Bangladesh (Meghna Deltaic Plain, marked orange) and East
Bangladesh (Chattogram Coastal Plain, marked purple). Equidistant sampling is implemented along
Bangladesh’s coastline (300 km) to generate 50 points (defined as virtual stations) at 6 km intervals,
supplemented by the only four existing GESLA tidal stations. Virtual stations are labeled with the
MIT/Earth Signals and Systems Group alums’ names, represented by squares with IDs from 1 to 50,
while GESLA stations are represented by pentagrams with IDs from 51 to 54; detailed information
for regional stations can be found in Table B2. C, the histogram with the associated number refers
to the reported total fatalities caused by each TC (data from reference [21]). Base map sourced
from the BDP 2100 (Baseline Volume 1, pg. 403), Humanitarian Data Exchange, World Bank, ESRI
ArcGIS, Maxar, Earthstar Geographics, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User
Community.
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2 Results

2.1 Bangladesh’s coastal floods under current and future
climate across scales

We conducted coastal flood hazard assessments in Bangladesh to determine how cli-
mate change affects coastal flooding and which regions are most vulnerable. The
assessments were carried out at national (aggregate projections for all 54 stations),
regional (projections aggregated within stations in the Ganges, Meghna, and Chat-
togram, respectively), and local (station) scales. At the national level, we found that
Bangladesh’s coastal floods will significantly increase due to climate change by the
end of the 21st century, see Figure A1. The 100-year coastal flood, currently at 4.15 m
(CI: 2.63 m to 5.69 m), is projected to rise to 5.92 m (CI: 3.98 m to 8.97 m) and 6.60
m (CI: 4.33 m to 9.68 m) under CMIP5 RCP8.5 and CMIP6 SSP5-8.5 respectively.
The less frequent 500-year coastal flood, currently at 5.47 m (CI: 3.45 m to 7.31 m), is
expected to escalate to 7.28 m (CI: 4.97 m to 10.46 m) and 8.26 m (CI: 5.50 m to 11.35
m) under CMIP5 RCP8.5 and CMIP6 SSP5-8.5 respectively. Climate change exacer-
bates Bangladesh’s 100-year and 500-year coastal floods, causing a rise of 1.77 m and
1.81 m under CMIP5 RCP8.5 and 2.45 m and 2.79 m under CMIP6 SSP5-8.5 respec-
tively. The projections from CMIP6 models increase risk compared to CMIP5 models.
Furthermore, the statistical uncertainty increases at more extended return periods.

Coastal floods in Bangladesh distribute unevenly under climate change. As shown
in Figure 2 (regional scale), the 100-year flood in the Ganges is currently at 3.76 m
(CI: 2.98 m to 4.84 m), but it is expected to increase to 5.47 m (CI: 4.10 m to 7.16
m) and 6.29 m (CI: 4.46 m to 8.51 m) under CMIP5 RCP8.5 and CMIP6 SSP5-8.5,
respectively. The 100-year flood in the Meghna is expected to rise from 4.66 m (CI:
4.05 m to 5.97 m) to 6.91 m (CI: 5.49 m to 10.01 m) and 7.84 m (CI: 5.86 m to 10.17 m)
under CMIP5 RCP8.5 and CMIP6 SSP5-8.5, respectively. In the case of Chattogram,
the 100-year flood is expected to rise from 2.95 m (CI: 2.56 m to 6.18 m) to 4.81 m
(CI: 3.70 m to 8.85 m) and 4.96 m (CI: 3.94 m to 9.85 m) under CMIP5 RCP8.5 and
CMIP6 SSP5-8.5, respectively. Under CMIP5 RCP8.5, the 100-year flood values for
the Ganges, Meghna, and Chattogram are expected to increase by 1.71 m, 2.25 m,
and 1.86 m, respectively, while under CMIP6 SSP5-8.5, the increase values are 2.53
m, 3.18 m, and 2.01 m, respectively.

Figure A2 illustrates the projected 50-, 100-, and 500-year coastal floods at each
station under CMIP5 RCP8.5 and CMIP6 SSP5-8.5. The CMIP6 increases are more
significant compared to CMIP5 models. The coastal flood magnitudes are expected
to increase the most at stations located in northern Chattogram. For example, at
”station Navi” with ID=31, located at north Chattogram, the 100-year coastal flood
is estimated to be 6.51 m (CI: 6.13 m to 6.89 m) under the current climate, 9.08
m (CI: 8.0 m to 11.13 m) under CMIP5 RCP8.5, and 10.30 m (CI: 8.27 m to 12.45
m) under CMIP6 SSP5-8.5. On the other hand, at ”station Zhuchang” with ID=49,
located at south Chattogram, the 100-year coastal flood is only projected to be 2.44
m (CI: 2.36 m to 2.52 m), 3.85 m (CI: 3.53 m to 4.90 m), and 4.41 m (CI: 3.73 m
to 4.70 m) in the same scenarios. These findings suggest that northern Chattogram is
the most vulnerable region to climate change, followed by Meghna in second place and
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Ganges in third place. Southern Chattogram is ranked as the fourth most vulnerable
region. The above assessment provides useful information for localized coastal climate
adaptation planning and risk mitigation.

Fig. 2 Bangladesh’s coastal floods versus return periods, as projected by CMIP5 and
CMIP6 models at the regional scale. Coastal floods are the total water levels (combined compo-
nents of astronomic tide, storm surge, and mean sea level state) relative to the mean sea level of the
1995-2014 baseline. a, b, c, Projections for the Ganges. d, e, f, Projections for the Meghna. g, h, i,
Projections for the Chattogram. a, d, g, CMIP5 model ensemble composite, b, e, h, CMIP6 model
ensemble composite. c, f, i, Comparison between CMIP5 and CMIP6 models. Blue, orange, and red
solid lines indicate the ensemble median (0.5 quantiles) for the current climate, CMIP5 RCP8.5, and
CMIP6 SSP5-8.5, respectively. Blue, orange, and red shaded areas indicate each estimate’s confidence
interval (CI, 0.1-0.9 quantile). The current climate period spans from 1981 to 2000, while the future
climate period spans from 2081 to 2100.

2.2 The contributions of changing SLR and TC climatology to
coastal flood risk

Changes in the coastal flood are influenced by two primary factors, TC climatology
changes, and SLR, but their roles differ across Bangladesh’s coastline. To measure the
relative contribution of these factors to the increase in coastal flood, we compared
the ensemble medians of coastal flooding (incorporating SLR, see Figure A2) and
storm tide (without considering SLR, Figure B19) at each return period. The results,
depicted in Figure 3, show that the proportion of coastal flood attributed to the change
in TC climatology is greater under CMIP6 SSP5-8.5 than under CMIP5 RCP8.5.
Interestingly, projections within CMIP6 SSP5-8.5 indicate that TC climatology has
more impact (TC contribution greater than 50%) than SLR on coastal flooding.
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Fig. 3 Contribution of TC climatology change and SLR to changes of Bangladesh’s
coastal floods (50-year, 100-year, and 500-year return period) at the regional scale. a,
b, c, 50-year return period. d, e, f, 100-year return period. g, h, i, 500-year return period. a, d, g,
stations located in the Ganges. b, e, h, stations located in the Meghna. c, f, i, stations located in the
Chattogram. Projections were conducted for all 54 stations; here, the graph only displays every other
station. The blue and orange stacked histogram heights indicate the percentage of TC climatology
change and SLR to changes of coastal flood projected by the CMIP5 models, respectively. The purple
and red stacked histogram heights indicate the percentage of TC climatology change and SLR to
changes of coastal flood projected by the CMIP6 models, respectively. The changes of the coastal
flood are calculated based on these estimates’ ensemble median (0.5 quantile).

Specifically, under CMIP5 RCP8.5, 42.6% (50-year return period), 48.2% (100-
year return period), and 66.7% (500-year return period) of all 54 stations experience
an increase in coastal flood predominantly caused by TC climatology change rather
than SLR. On average, TC climatology change contributes 49.9% (in the Ganges),
52.6% (in the Meghna), and 47.0% (in the Chattogram) to the increase of coastal flood
for the 100-year return period. In comparison, projections under CMIP6 SSP5-8.5
indicate that TC climatology changes dominate the growth of coastal flood in 94.4%
(50-year return period), 100% (100-year return period), and 100% (500-year return
period) of all 54 stations. On average, TC climatology change contributes 71.6% (in
the Ganges), 71.9% (in the Meghna), and 63.2% (in the Chattogram) to the increase
in coastal flood for the 100-year return period.

2.3 Frequency of historically deadliest coastal floods under
warming climate

Estimating the annual exceedance frequency (the reciprocal of the return period) of
the deadliest coastal floods in a future scenario similar to the deadliest TCs from
the past, such as TC Bhola (1970) and TC Gorky (1991), is crucial for developing
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Fig. 4 Changing annual frequency of historically deadliest TC-induced coastal floods in
a warming climate. a, assessment for the TC Bhola at ”station Nick” with ID=32. b, assessment for
the TC Gorky at ”station Paco” with ID=34 (nearest to Chittagong). The histogram height indicates
the ensemble median for the estimated return period of coastal flood corresponding to the observation
(obtained from previous studies [1, 22, 23]). The whiskers indicate the estimated confidence interval
(CI, 0.1-0.9 quantile). The red pentagram icon in the top-right corner of each subplot indicates the
location where the maximum total water level was measured during the two landfall TCs. Base map
sourced from the BDP 2100 (Baseline Volume 1, pg. 403), Humanitarian Data Exchange, World
Bank, ESRI ArcGIS, Maxar, Earthstar Geographics, USDA FSA, USGS, Aerogrid, IGN, IGP, and
the GIS User Community.

climate adaptation strategies. However, only one observation documents the maximum
total water level during Bhola (9.10 m, observed at north Chittagong) [1, 22] and
Gorky (7.30 m, followed near Chittagong) [23], respectively. Assessing risk across the
entire coastline is challenging due to poor monitoring of water level records. Thus, we
examine the 32nd station and 34th station (which are nearest to the observations) to
represent approximately Bhola-induced and Gorky-induced maximum flood heights,
respectively.

Figure 4 illustrates the annual frequency of these two deadliest TC-induced coastal
floods in the current climate and their potential change in a warming climate, con-
sidering the joint effect of TC climatology change and SLR. In the current climate,
the return period of Bhola’s flood height is estimated to be 623 years (CI: years 487
to 764). By the end of the 21st century, projections under CMIP5 RCP8.5 show that
it will become 264 years (CI: 46 to 408) without SLR and 121 years (CI: years 26 to
172) with SLR. Projections under CMIP6 SSP5-8.5 show that it will become 85 years
(CI: 32 to 283) without the SLR effect and 47 years (CI: 21 to 156) with SLR.

Similarly, in the current climate, the return period of Gorky’s flood height is esti-
mated to be 494 years (CI: 396 to 597). By the end of the 21st century, projections
under CMIP5 RCP8.5 show that it will become 224 years (CI: 26 to 390) without SLR
and 88 years with SLR (CI: 14 to 118). Projections under CMIP6 SSP5-8.5 show that
it will become 56 years (CI: 24 to 193) without and 25 years (CI: 16 to 108) with the
SLR effect.

Thus, the annual frequency of the deadliest coastal floods, similar to those induced
by Bhola and Gorky, is expected to increase significantly. The frequency of a Bhola-like
flood height may increase from 1 in 623 to 1 in 47, while the frequency of a Gorky-like
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flood height may increase from 1 in 494 to 1 in 25 under the CMIP6 SSP5-8.5 scenario.
These projections consider the joint effects of TC climatology change and rising sea
levels through joint Monte Carlo sampling (see Section 4.4 for explanation).

2.4 Changing seasonal intensity, frequency, and the summer
monsoon season

Fig. 5 Shifted seasonal regimes of coastal flood intensity (greater than 2 m flood height)
based on CMIP6 climate model ensembles. a, seasonal distribution of coastal flood intensity
under the CMIP6 current climate. b, seasonal distribution of coastal flood intensity under the CMIP6
SSP5-8.5 climate. c, the increasing ratio of median and extreme coastal flood intensities across the
year, with a 3-point sliding average applied to get monthly ratios. The light gray square located at
the top of each swarm in subplot a and b indicate the mean value of the top ten extreme coastal
floods, while the light orange shading area in subplot c indicates the Monsoon season of the BoB.

Bangladesh’s landfall TCs exhibit clear bimodal seasonality, typically active
during the pre-monsoon period (April-May) and the post-monsoon period (October-
December), but are relatively silent June–August) due to the strong vertical wind
shear caused by the South Asian summer monsoon [24]. Here, we further investigate
how climate change affects such seasonal coastal flood regimes in severity (Figure 5)
and frequency (Figure 6).

Our findings suggest that the coastal flooding season will broaden significantly, with
the strongest severity amplifying during the monsoon flooding season. Specifically,
Figure 5 depicts a heightened coastal flood intensity and a broadened coastal flood
season based on CMIP6 climate model ensembles. An inactive coastal flood season
exists during the summer monsoon period, particularly from August 01 to September
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Fig. 6 Shifted seasonal regimes of coastal flood frequency (greater than 2 m flood height)
based on CMIP6 climate model ensembles. a, seasonal of coastal flood frequency under the
CMIP6 current climate. b, seasonal distribution of coastal flood frequency under the CMIP6 SSP5-
8.5 climate. c, the increasing ratio of coastal flood frequency for the medians throughout the year.
The error bar indicates the confidence interval from the 0.1 to 0.9 quantile. The light orange shading
area in subplot c indicates the Monsoon season of the BoB.

01, under the current climate (subplot a of Figure 5). The intensity of coastal flooding
during such three successive seasonal periods for the top ten extreme events are 3.63
m, 2.50 m, and 5.18 m. The corresponding ensemble medians are 2.42 m, 2.14 m,
and 2.20 m, respectively. However, the coastal flood intensity during the same periods
is projected to change significantly under the future climate to 4.66 m, 9.93 m, and
9.28 m for the extremes and 3.79 m, 5.53 m, and 5.64 m for the median flood. The
intensity ratios increase significantly during these three seasonal periods compared
to any other period, with values of 2.28, 2.35, and 2.43 for the ensemble extremes
and 1.95, 2.24, and 2.35 for the ensemble medians, respectively. Climate change has
significantly shortened the interval of cyclone dormancy from 45 days to a mere 15 days
(only August 01). The heightened levels of coastal flooding during the late monsoon
season (around mid-August) overlapping with the already existing heavy monsoon
rainfall (e.g., the devastating floods of August 2017 [25]) can substantially amplify the
cascading inland-coastal flood risk in Bangladesh.

In addition, there have been substantial changes to significant seasonal coastal
flooding event frequencies, with a potentially manifold increase in back-to-back flood-
ing events during post-monsoon seasons. Specifically, Figure 6 indicates the shifted
seasonal frequency of coastal floods based on CMIP6 climate models. The combined
impact of TC climatology change and SLR is causing an increase in the frequency
of coastal floods that exceed a two-meter threshold. The most significant rise occurs
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during the post-monsoon season, particularly in October. The seasonal frequencies of
coastal flooding during the three successive periods are 0.067 (CI: 0.059 to 0.076),
0.065 (CI: 0.056 to 0.075), and 0.032 (CI: 0.026 to 0.038), respectively, under the cur-
rent climate. However, these frequencies change to 0.236 (CI: 0.048 to 0.504), 0.244
(CI: 0.064 to 0.379), and 0.102 (CI: 0.033 to 0.211) under the future climate, with
a significantly higher increase ratio of 3.49, 3.75, and 3.21 compared to any other
seasonal period. More frequent events during each period will decrease the interval
between occurrences, leading to a higher likelihood of back-to-back coastal flooding.

3 Discussion

Reliably estimating the frequency of extreme coastal floods is challenging, particularly
in regions with insufficient observations, such as Bangladesh. Only limited studies have
evaluated Bangladesh’s coastal flood hazard under current climate conditions, let alone
future ones. Khan [11] applied the same downscaling-hydrodynamic method to assess
the coastal flood hazard in coastal Bangladesh, but only under the current climate.
By comparing their result with other existing return period estimations, the author
suggests that previous studies overestimate the coastal flood return period due to the
biased extreme TC events sampling strategy. For example, Jakobsen [26] estimates
that the 100-year flood height is about 5 m at the mouth of Meghna and about 8–10
m at Sanwip. In contrast, Khan’s estimates are about 4 m at the mouth of Meghna
and about 6 m at Sandwip. Our estimate in the current climate aligns with Khan’s
findings. We estimate that the 100-year flood height at the mouth of Meghna and
Sandwip is about 4.66 m (Meghna region average) and 6.51 m (”station Navi” with
ID=31), respectively. Regarding estimating the return period of coastal floods under
future climate, only Leijnse [27] did some work in Bangladesh. The 100-year surge
level estimated by Leijnse for Charchanga and Chittagong is over 60 cm lower than
Khan’s estimation. However, Leijnse’s hydrodynamic model did not incorporate the
updated bathymetric dataset in the northern BoB. Besides, only a purely statistical
approach based on the historic TC dataset was applied to generate synthetic TCs
without an explicit climate representation in addressing TC activity change under
warming climates. As a result, significant uncertainties may remain in their coastal
flood return period estimation. So, we do not make the comparison here.

Several noteworthy findings from our results deserve further discussion. First, our
projections at the regional scale revealed that the increase in coastal flooding for
Ganges (subplot c in Figure 2 and Figure B18) and Meghna (subplot f in Figure 2 and
Figure B18) is higher under CMIP6 SSP5-8.5 than under CMIP5 RCP8.5. Still, there
is no significant increase for Chattogram (subplot i in Figure 2 and Figure B18) from
CMIP5 RCP8.5 to CMIP6 SSP5-8.5. Using a box plot, we display the distribution of
100-year storm tides for three regions under current and future climates (Figure B20).
Compared to Ganges and Meghna, Chattogram shows a significantly right-skewed
(the median closer to the box’s bottom) and dispersed (extended box) distribution.
The orientation of Chattogram, which runs parallel to the longitude, results in con-
siderably different magnitudes of storm surges and tides (subplot c, f, i in Figure A2
and Figure B19) between the northern funnel top (station ID from 31 to 37) and the
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remaining southern area (station ID from 38 to 50). The effect of TC climatology
change on coastal floods in the south of Chattogram is relatively limited compared
to other regions, regardless of whether it is under CMIP5 RCP8.5 or CMIP6 SSP5-
8.5. Sai comment: talk to me about coastally trapped waves in the BoB morphology.
Remove this red flag before submission!

Interestingly, TC climatology change contributes more than SLR to the elevated
coastal floods under CMIP6 SSP5-8.5 compared to under CMIP5 RCP8.5. This dif-
ference results from the magnitude of TC climatology change because the same SLR
samples were applied to CMIP5 RCP8.5 and CMIP6 SSP5-8.5. TC frequency is
notably higher under CMIP6 SSP5-8.5, as illustrated in Figure A4, with a median
of 1.58 (CI: 0.62 to 2.29), compared to CMIP5 RCP8.5, with a median of 0.88 (CI:
0.53 to 1.44). Equation 1 and Equation 2 show an inverse relationship between TC
frequency and exceedance probability. As depicted in Figure A8, the total water level
and exceedance probability also share an inverse relationship. An increase in TC fre-
quency with a fixed return period T leads to a decrease in exceedance probability,
ultimately resulting in a higher total water level. On the other hand, Emanuel’s [7]
TC wind projections in Bangladesh show that TC wind intensity increases signifi-
cantly more under CMIP6 SSP5-8.5 than under CMIP5 RCP8.5. The 100-year TC
wind rose from 123 knots to 145 under CMIP5 RCP8.5 while further escalating to
168 knots under CMIP6 SSP5-8.5. Therefore, CMIP6 SSP5-8.5 projects more frequent
and intensified TCs than CMIP5 RCP8.5. As a result, we posit that TC climatology
change under CMIP6 SSP5-8.5 contributes more to the growth in coastal flooding
than under CMIP5 RCP8.5.

Our study has broad implications. We estimate the return period of coastal floods
incorporating the combined effect of future TC climatology change and SLR and inves-
tigate flood distributions across seasons in intensity (severity) and frequency. Our
assessment could inform the relevant policymakers and stakeholders about when and
where to enhance coastal resilience further and mitigate risk towards more targeted
and practical solutions in a changing climate. Our findings suggest that future plan-
ning, rehabilitation, and improvement of infrastructure investments should prioritize
the region of Meghna and northern Chattogram and pay more attention to the grow-
ing risk of cascading inland-coastal flooding during late summer monsoons (August)
and back-to-back coastal floods during the post-monsoon-period-(-October-and early
November). Examples of such investments include the Coastal Embankment Improve-
ment Project (CEIP) and Multipurpose Disaster Shelter Project (MDSP) from World
Bank [9]. Accurately estimating extreme coastal floods’ occurrence probabilities and
seasonal distribution and implementing a well-designed risk mitigation plan can save
livelihoods and reduce financial burdens by minimizing disaster impact while avoiding
unnecessary and costly overprotection measures [28].

There are a few limitations in this study that require further improvement. Firstly,
significant uncertainty exists among the various climate models that predict future
TC activity [29] and SLR [30]. Although the newer CMIP6 has reduced these uncer-
tainties compared to CMIP5, there is still a need for future research to improve the
accuracy of these models in projecting the atmospheric and oceanic variables that
control TC activity and sea level dynamics. Secondly, it’s important to note that TCs
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induce storm surges and produce extreme precipitation, especially when they stall
during landfall. Emanuel [7] projects a twenty-fold increase in severe storm accumu-
lated rainfall (exceeding 1000 mm in Dhaka) due to climate change. The growing
overlap with the monsoon season is indicated here, and summer heat stress is shown
elsewhere [] Sai Comment: cite the nature paper on heat stress and cyclones. Future
research should consider these factors jointly in Bangladesh for integrating coastal,
fluvial, and pluvial processes components [31–33], in addition to the compound effects
of TC winds and rainfall that is well underway in the community.

4 Methods

Our approach involves three primary components: synthetic TC downscaling, hydro-
dynamic simulation, and statistical analysis incorporating bias correction. These
components are discussed in this section.

4.1 Synthetic TC downscaling

We use a statistical-deterministic downscaling technique to create sets of synthetic
tropical cyclones (TCs) that affect Bangladesh [12, 13]. The method uses thermody-
namic and kinematic statistics from gridded global reanalyses or climate models to
produce many synthetic TCs. Initially, we synthetically generate large-scale environ-
mental factors such as potential intensity, wind shear, humidity, and thermal ocean
stratification from gridded global reanalyses or climate models. These factors are cre-
ated as a Fourier series of random phases in time, and they are constrained to have
accurate monthly means, variances, and covariance with a geostrophic turbulence
power-law distribution of the kinetic energy spectrum.

The time-evolving environment is seeded randomly in space and time with warm-
core vortices of 12 m/s (25 knots) peak wind speeds. These seed vortices are then
propagated forward with a weighted average of synthesized winds at the 250 and
850 hPa levels, according to the beta-and-advection model [34]. The intensity of the
vortices is then calculated deterministically using the Coupled Hurricane Intensity Pre-
diction System (CHIPS) model [35], which phrases the dynamics in angular momentum
coordinates that allow for very high spatial resolution in the storm core. The intensity
model also accounts for salinity effects on density, affecting TC potential intensity,
since the Bay of Bengal has strong salinity gradients, especially in summer [7].

Over 99% of the seeded tracks dissipate quickly and are discarded. The remaining
successfully grow to make up the downscaled TC climatology of a reanalysis or climate
model. Only the seeds that develop a maximum wind speed of at least 21 m/s (40 kt)
during their lifetime form synthetic TCs. The annual frequency of TC is postulated to
be directly related to the ratio of successful to unsuccessful seeds in a given year, with
a constant of proportionality established by comparing time averages to dependable
historical records.

We identify synthetic TCs affecting Bangladesh based on their passage over
one or both of the two-line segments displayed in Figure A3. ECMWF/ERA5 and
GMAO/MERRA2 climate reanalyses yield 4,100 TCs for the current period (1980-
2020). We also generate 2,000 TCs using six CMIP5 and seven CMIP6 global climate
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models for two time periods: 1981-2000 for historical simulations and 2081-2100 for
RCP 8.5 (CMIP5) and SSP5-8.5 (CMIP6) simulations. Overall, we generated a total
of 60,800 TCs. Further details about this study’s reanalyses and climate models are
summarized in Table A1.

The annual frequency of historical TC landfall in Bangladesh is estimated to be
0.634 based on the 26 events recorded in the JTWC dataset from 1980 to 2020 [36].
We considered only those TCs with peak wind speeds more than the tropical storm
intensity threshold (33 knots). We assume that this occurrence rate (0.634) represents
the TC annual frequency under the current climate and that TC occurrence follows a
Poisson process with arrival rate λ. More details about the landfall information and
Poisson distribution fitting can be found in Figure A3.

Climate model projections may be biased; hence, we bias-correct the TC annual
frequency for each climate model under the current climate through a multiplicative
factor to match the observed annual frequency (0.634). Assuming that the bias cor-
rection calculated under the current climate can be applied to future projections, we
multiply the frequency prediction for future climate by the ratio of the bias correction
for the current climate. The original TC annual frequency for the future produced
from the TC model is shown in Figure A4. The bias-corrected frequency and change
information are presented in Section 4.4. However, the significant variation among the
model predictions reflects the general uncertainties in climate model projections of TC
frequency due to systematic model differences and internal climate variability [37].

4.2 Hydrodynamic simulation

Mesh generation.
We used ADCIRC (ADvanced CIRCulation model, two-dimensional barotropic

tides, Version 55.01) [19, 38, 39] for storm surge simulations and used a tool called
OceanMesh2D, to generate detailed, high-fidelity unstructured meshes [40, 41] for
BoB (spanning latitudes from 9°N to 23°N and longitudes from 80°E to 100°E). The
mesh generated by OceanMesh2D is based on several feature-driven geometric and
topographic-bathymetric mesh size functions, providing adequate resolution to capture
the intricate coastal characteristics.

To generate the computational mesh, sai comment: fix this sentence we used
shoreline and bathymetry data. The shoreline boundaries were defined using the
full-resolution Global Self-consistent Hierarchical High-resolution Shorelines (GSHHS)
dataset [42]. Bathymetry data were obtained from two sources: the General Bathy-
metric Chart of the Oceans (GEBCO) on a 15 arc-seconds geographic latitude and
longitude grid for the primary Bay of Bengal [43] and an updated bathymetric dataset
for the Bengal Delta [20]. The bathymetric points were first mapped onto a structured
grid at 200 m resolution using a simple kriging method [44]. Both bathymetries were
unified to mean sea level. Bathymetry and bathymetric slope were interpolated onto
inner and outer mesh vertices directly from the original DEM, then merged to ensure
consistency across the connected areas (Figure B10).

The final unstructured mesh consisted of 62,009 vertices and 115,199 triangular
elements, with a resolution ranging from 20 km over the deep ocean to 1 km near the
coastlines (Figure A5). The mesh size functions and their corresponding parameter
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values for spatially distributing element resolution are summarized in Table B3. The
maximum topographic gradient was kept below 0.1 to ensure numerical stability. We
used the information from shoreline distance and water depth to categorize the outer
node string boundary into mainland and ocean. The ocean boundaries are the segments
whose distance from the shoreline is beyond 0.4 geographic degrees, and the depth from
the sea level is below 30 m (Figure B11). For the mainland boundary, the segments
whose distance from the shoreline is within 0.4 geographic degrees and the depth from
the sea level is below 30 m are classified as the mainland boundary.

Model setup.
Both astronomical tides and meteorological factors cause coastal floods. To obtain

more precise and comprehensive astronomical tide solutions, all eight major astronomi-
cal tidal components (K1,K2,M2,N2, O1, P1, Q1, and S2) are taken into account. The
self-attraction, loading, and internal tide terms are also considered [45, 46]. Astronomi-
cal tidal amplitudes and phases are obtained from the latest global satellite-assimilated
tidal model TPXO9-Atlas-v5 with a resolution of 1/30° [47]. The surface wind and
atmospheric pressure field associated with a TC is reconstructed at each node using
the symmetric Holland parametric vortex model (H80) during the simulation [48].
The bottom friction is parameterized using Manning’s N, with a similar approach to
previous studies for the spatial distribution of the Manning coefficient to ensure con-
sistency with them [10, 11, 20]. For water depths greater than 20 m, the Manning
coefficient is 0.02, while it is 0.013 in the nearshore zone (Figure B12). To balance
computational cost and numerical stability, a time step of 60 seconds is used for the
simulation. Each simulation for one track takes approximately 8.8 seconds using a par-
allel setup with 40 CPU cores (Figure B13). For simulating multiple synthetic TCs,
the timing of astronomical tides is synchronized with that of the synthetic TC, and a
one-day model spin-up is applied for all simulations.

Model validation.
The hydrodynamic model’s performance was assessed by comparing its output with

TPXO9-Atlas and tide gauge station data for global astronomical tide validation and
total water level validation, respectively, along the coast of Bangladesh. The model
was initially driven by five leading astronomical tidal constituents (M2, S2, N2, K1,
and O1) for 31 days, with three days for spin-up and 28 days for harmonic analysis [44].
The model results showed the global responses of M2 and K1 tidal waves (Figure B14)
and their RMSE discrepancies against TPXO9-Atlas (Figure B15) [39]. In comparison
with previous studies [49, 50], the model accurately described the constituents’ general
response, including the amphidromes’ positions.

Subsequently, the historical TC Sidr (”IO062007”) was used to validate the total
water levels. The results showed that the observed and simulated storm tides had sat-
isfactory agreement, with an overall root-mean-square error, bias, and Willmott skill
of 0.27, -0.09, and 0.96, respectively, at the Hiron Point (PSMSL ID=1451) and 0.43, -
0.32, and 0.93, respectively, at the Khepupara station (PSMSL ID=1454) (Figure A6).
The maximum water elevation during Sidr’s lifetime can be found in Figure B16.
Through this comprehensive validation process, we aimed to assess the hydrodynamic
model’s performance and ensure that it is suitable for capturing storm surge dynamics
and water level variations in coastal Bangladesh.
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4.3 IPCC AR6 relative sea-level projection

The probabilistic, localized relative sea-level projections are based on a Framework
for Assessing Changes To Sea-level (FACTS) [51], which emphasizes the role of the
Antarctic and Greenland ice sheet as drivers of structural uncertainty in sea-level
rise projections. FACTS can generate seven alternative probability distributions rela-
tive to a 1995-2014 baseline under multiple alternative emissions scenarios presented
in the Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC
AR6) [30]. In this study, we apply the gauge-based Monte Carlo samples (20,000
in total) of future relative sea level under workflows 2-E and scenario SSP5-8.5,
covering the period from 2080 to 2100 (Figure A7). The four gauge-based stations
located in coastal Bangladesh are Hiron Point (PSMSL ID=1451), Khepupara (PSMSL
ID=1454), Charchanga (PSMSL ID=1496), and Cox Bazaar (PSMSL ID=1476). The
workflow 2-E of FACTS employs Gaussian Process emulation for Greenland, glaciers,
and Antarctica and forms the basis of the medium confidence projections presented
by IPCC AR6. The SSP5-8.5 emission scenario aligns with the scenario of TC pro-
jections in future climate and represents a high-end trajectory that would require a
reversion to fossil-fuel-intensive development.

Previous studies used a convolution method to calculate the cumulative distribu-
tion function of a coastal flood, incorporating sea level rise (SLR). Still, we apply a
sampling strategy considering the joint distribution with SLR. To do this, we pair each
TC-induced peak storm tide with an SLR sample randomly selected from the Monte
Carlo samples of sea-level projections. As we generate synthetic TCs year by year
(100 per year) with explicit timing, we obtain an SLR sample for the same year for
the gauge station closest to the TC landfall location among the four available GESLA
gauge stations, adding it to the peak storm tide to represent the total water levels of
the coastal flood. We also assume that the sea level rises monotonically. Thus, we rep-
resent the distributions using statistics at 2080, 2090, and 2100, linearly interpolated
to the year to get SLR samples.

4.4 Statistical analysis

Return period estimation.
We calculate storm tide against return period curves (without considering sea level

rise) and coastal flood against return period curves (including sea level rise) for each
of the 54 coastal stations. For each simulation of coastal flood induced by a TC,
we extract the highest water elevation during the entire cyclone’s lifetime and the
corresponding time. At each station, we use a vector of 2,000 peaks (climate model)
or 4,100 peaks (climate reanalyses) for return period curve calculations. On the other
hand, we use peak times to analyze the temporal distribution of extreme coastal floods.
We assume that TCs arrive as a stationary Poisson process in a given climate [14].
We calculate the return period of TC-induced storm tides, which incorporates storm
surge and astronomical tide but not SLR, exceeding a given return level h using the
formula [52]:

Tηstorm tide
(h) =

1

λ× EP{ηstorm tide > h}
(1)

16



Where λ is the TC annual frequency, EP{ηstorm tide > h} is the annual
exceedance probability of maximum TC-induced storm tide, EP{ηstorm tide > h} =
1 − P {ηstorm tide ≤ h}, P {ηstorm tide ≤ h} is the cumulative distribution function.
Extreme value theory suggests estimating the probability of TC-induced storm tide
using the Peaks-Over-Threshold method, with a Generalized Pareto Distribution in
the upper tail [53]. This study divided the peak storm tide values into two segments
using a fixed threshold at the 98th percentile. Then, we utilized the Generalized Pareto
Distribution to fit the upper tail and a kernel density estimate [54] to fit the remaining
portion (Figure A8). The cumulative distribution function at 100 equally spaced points
is first estimated for smooth kernel density estimate. Then linear interpolation is used
to compute the cumulative distribution function estimates for the points between the
100 points (function paretotails in MATLAB). Given a return period ranging from 10
to 1000, the corresponding return levels for storm tide can be calculated using the
inverse cumulative distribution function (function icdf in MATLAB).

Once the contributions of SLR are included, the return period of the coastal floods
(incorporating storm surge, astronomic tide, and SLR) exceeding a given return level
h are calculated using the same method as storm tides by [52]:

Tηcoastal flood
(h) =

1

λ× EP{ηcoastal flood > h}
(2)

Where the annual exceedance probability of maximum coastal flood denoted as
EP{ηcoastal flood > h}, is defined as EP{ηcoastal flood > h} = 1− P{ηcoastal flood ≤ h},
where P{ηcoastal flood ≤ h} is the cumulative distribution function.

The approach allows straightforward impact assessments of TC climatology change
and SLR on future coastal floods at the station scale. The contribution of TC climatol-
ogy change on coastal flood can be measured by the ratio of the water level (ensemble
median) changes with and without considering the effect of SLR on the water level.
After obtaining return period curves, we can determine the annual frequencies (the
inverse of the return period) of the historical extreme total water levels based on return
period curves under the current climate using observed flood heights. Furthermore,
based on return period curves under future climate (with and without SLR), we can
also predict the evolution of historical extreme flood frequency in a warming climate.

Bias correction.
It’s important to note that climate model projections can be biased in various

ways. These include estimating TC frequency, calculating return period curves for
storm tide/coastal flood, and the seasonal distribution of TCs.

The annual frequency of TCs adjusts with a bias correction and differs depending
on the climate model used (- means decrease while + means increase). CMIP5 models:
GFDL5 is 0.53 (-6.59%), MPI5 is 0.56 (-2.67%), CCSM4 is 0.80 (+41.03%), IPSL5
0.95 (+67.19%), HADGEM5 is 1.16 (+103.51%), MIROC5 is 1.47 (+157.14%); for 7
CMIP6 models: CANESM is 0.59 (-7.44%), MPI6 is 0.74 (+16.93%), MRI6 is 1.18
(+86.44%), MIROC6 is 1.58 (+148.67%), CNRM6 is 2.15 (+239.61%), IPSL6 is 2.27
(+257.30%), ECEARTH6 is 2.30 (+262.89%).

We use a quantile-quantile mapping method to bias correct the data to ensure
that our storm tide/coastal flood return period curves are accurate (Figure ??). This
is done station by station by adjusting the climate model-based return level to the
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averaged reanalyses-based (ECMWF/ERA5 and GMAO/MERRA2) return level for
the current climate in yearly return period increments. This produces a bias correction
table for each station, return period, and climate model. The bias is also removed
from each corresponding climate model in a future climate scenario, assuming that
such bias must be removed to the first order.

We also bias-correct the seasonal distribution of coastal floods under current and
future climates. This helps us investigate the seasonal shift regimes of coastal floods
in intensity and frequency. The downscaling synthetic TCs with physics-consistent
times allows for determining the specific date associated with the peak storm tide.
We establish a 14-day window, including seven days before and seven days after each
month’s onset and middle days, to categorize the bias-corrected coastal floods into
different seasonal periods. The frequency of flooding in a specific season is calculated by
multiplying the annual frequency by the seasonal factor, representing the proportion of
this season’s coastal floods out of all coastal floods. Then, we align the current climate
model frequency over 24 15-day periods with corresponding averaged reanalyses-based
(ECMWF/ERA5 and GMAO/MERRA2) frequencies and apply the estimated bias
correction for each relevant model and period in future seasonal frequency assessment.

5 Data availability

Some public data sets used for this study are available at
https://www.soest.hawaii.edu/pwessel/gshhg/ (GSHHS), https://www.gebco.net/
(GEBCO), https://www.metoc.navy.mil/jtwc/jtwc.html?north-indian-ocean(JTWC),
ftp://ftp.legos. obs-mip.fr/pub/FES2012-project/data/LSA/FES2014/ (FES
tidal database), https://www.tpxo.net/global/tpxo9-atlas (TPXO9-atlas-v5),
https://github.com/rutgers-ESSP/ipCC-AR6-Sea-Level-Projections (IPCC AR6
Sea-Level Projections), https://surge.climate.lsu.edu/data.html (SURGEDAT). Win-
dRiskTech L.L.C. performs TC-induced risk assessments for clients worldwide and
provides datasets for scientific research upon request (info@windrisktech.com), sub-
ject to a non-redistribution agreement. Our coastal flood frequency estimation will
be publicly available upon acceptance of our manuscript.

6 Code availability

The hydrodynamic model is developed using the OceanMesh2D toolbox
(https://github.com/CHLNDDEV/OceanMesh2D). The Peaks-Over-Threshold based
Generalized Pareto Distribution fitting is executed using a MATLAB (Version 2022a)
paretotails function. All figures are also generated using MATLAB. The codes used to
create an unstructured mesh, make ADCIRC input for files, and result visualization
can be accessed from the corresponding authors upon reasonable request.
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[56] Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Ran-
dles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., et al.: The modern-era

23



retrospective analysis for research and applications, version 2 (merra-2). Journal
of climate 30(14), 5419–5454 (2017)

[57] Lawrence, D.M., Oleson, K.W., Flanner, M.G., Thornton, P.E., Swenson, S.C.,
Lawrence, P.J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., et al.: Parame-
terization improvements and functional and structural advances in version 4 of
the community land model. Journal of Advances in Modeling Earth Systems 3(1)
(2011)

[58] Donner, L.J., Wyman, B.L., Hemler, R.S., Horowitz, L.W., Ming, Y., Zhao, M.,
Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M.D., et al.: The dynamical
core, physical parameterizations, and basic simulation characteristics of the atmo-
spheric component am3 of the gfdl global coupled model cm3. Journal of Climate
24(13), 3484–3519 (2011)

[59] Collins, W., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hin-
ton, T., Hughes, J., Jones, C., Joshi, M., Liddicoat, S., et al.: Development and
evaluation of an earth-system model–hadgem2. Geoscientific Model Development
4(4), 1051–1075 (2011)

[60] Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., et al.: Climate change pro-
jections using the ipsl-cm5 earth system model: from cmip3 to cmip5. Climate
dynamics 40, 2123–2165 (2013)

[61] Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., et al.: Improved climate
simulation by miroc5: mean states, variability, and climate sensitivity. Journal of
Climate 23(23), 6312–6335 (2010)

[62] Giorgetta, M.A., Jungclaus, J., Reick, C.H., Legutke, S., Bader, J., Böttinger,
M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., et al.: Climate and carbon
cycle changes from 1850 to 2100 in mpi-esm simulations for the coupled model
intercomparison project phase 5. Journal of Advances in Modeling Earth Systems
5(3), 572–597 (2013)

[63] Swart, N.C., Cole, J.N., Kharin, V.V., Lazare, M., Scinocca, J.F., Gillett, N.P.,
Anstey, J., Arora, V., Christian, J.R., Hanna, S., et al.: The canadian earth
system model version 5 (canesm5. 0.3). Geoscientific Model Development 12(11),
4823–4873 (2019)

[64] Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier,
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Appendix A Extended Data

Fig. A1 Bangladesh’s coastal flood against return period curves projected by CMIP5
and CMIP6 models at the national scale. a, CMIP5 models composite. b, CMIP6 models
composite. c, Comparison between CMIP5 and CMIP6 models. Coastal floods are the total water
levels (combined components of the astronomic tide, storm surge, and mean sea level state) relative
to the mean sea level of the 1995-2014 baseline. Blue, orange, and red solid lines indicate the ensem-
ble median (0.5 quantiles) for the current climate, CMIP5 RCP8.5 climate, and CMIP6 SSP5-8.5,
respectively. Blue, orange, and red shaded areas indicate each estimate’s confidence interval (CI, 0.1-
0.9 quantile). The current climate period spans from 1981 to 2000, while the future climate period
spans from 2081 to 2100.
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Fig. A2 Bangladesh’s 50-year, 100-year, 500-year coastal floods projected by CMIP5
and CMIP6 models at the station scale. Coastal floods are the total water levels (combined
components of astronomic tide, storm surge, and mean sea level state) relative to the mean sea level
of the 1995-2014 baseline. a, b, c, 50-year return period. d, e, f, 100-year return period. g, h, i,
500-year return period. a, d, g, stations located in the Ganges (southwest Bangladesh). b, e, h,
stations located in the Meghna (middle Bangladesh). c, f, i, stations located in the Chattogram (east
Bangladesh). Projections are conducted for all 54 stations, but the graph displays only every other
station. Blue, orange, and red histograms indicate the ensemble median (0.5 quantiles) for the current
climate, CMIP5 RCP8.5 climate, and CMIP6 SSP5-8.5, respectively. Vertical error bars indicate each
estimate’s confidence interval (CI, 0.1-0.9 quantile). The current climate period spans from 1981 to
2000, while the future climate period spans from 2081 to 2100. Base map sourced from the BDP 2100
(Baseline Volume 1, pg. 403), Humanitarian Data Exchange, World Bank, ESRI ArcGIS, Maxar,
Earthstar Geographics, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community.
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Fig. A3 Annual TC frequency analyzed using 26 JTWC TCs that made landfall in
Bangladesh from 1980 to 2020. These magenta lines with arrows indicate the TC’s track. The bold
orange two-segment lines indicate Emanuel’s filter used in generating synthetic TC tracks affecting
Bangladesh. Red squares on the filter indicate TC landfall locations. The upper left panel displays
the annual TC frequency estimation (λ = 0.634) by fitting a Poisson distribution with the annual
occurrence rate. Base map sourced from the ESRI ArcGIS, Maxar, Earthstar Geographics, USDA
FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community.
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Fig. A4 Projected annual TC frequency (without bias correction) from CMIP5 (lower
panel) and CMIP6 (upper panel) models. The blue and red horizontal bar lengths indicate
projected annual TC frequency in current and future climates (RCP8.5 for CMIP5, SSP5-8.5 for
CMIP6), respectively. The vertical yellow and black dash lines indicate the annual TC frequency esti-
mated based on climate reanalyses (including ECMWF/ERA5 and GMAO/MERRA2) and JTWC
historical observation. The bias-corrected annual TC frequency is summarized in our Method (Syn-
thetic TC generation).
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Fig. A5 Mesh triangulation and resolution (showed on a “miller” projection) for the
northern Bay of Bengal domain.
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Fig. A6 Comparison between modeled (red lines) and observed (blue points) total water
levels at station Hiron point (a) and Khepupara (b) for the validation of Sidr-induced
coastal flood.
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Fig. A7 IPCC AR6 relative sea-level projections from 2020 to 2100 for station
Hiron point (a), Khepupara (b), Charchanga (c) and Cox bazaar (d). The black solid lines
indicate the median value (0.5 quantile) of the projected values of total sea level rise, while the gray
shaded areas indicate the confidence interval (quantile 0.1-0.9). The upper left panel of each subplot
displays the CDF curve of the 20000 Monte Carlo samples for years 2080, 2090, and 2100, respectively.
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Fig. A8 An example of exceedance probability fitting curve with (purple line) and
without (yellow line) considering the effect of SLR at station Navi with ID=31 under
ECEARTH6 SSP5-8.5 scenario. The square dots represent the empirical exceedance probability
for each total water level, while the solid line indicates the fitted exceedance probability curve using the
piecewise Kernel-GPD estimation method. The red circle highlighted in bold indicates the threshold
(quantile) used to segment the dataset for fitting the GPD model in the tail, while a kernel estimation
is used in the remaining part. We performed the same fitting at all stations under all scenarios.
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Fig. A9 An example of the bias correction for the total water level against return
period curves with (red line) and without (purple line) considering the effect of SLR
at station Navi. The cyan, green, and blue lines represent the total water level and return period
curves under the ERA5, MERRA2, and ECEARTH6 20th, respectively; these three lines overlap
because we calibrated the ECEARTH6 20th to the averaged ERA5 and MERRA2 reanalyses. We
performed the same bias correction procedure for all CMIP models at all stations.
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Table A1 List of Climate reanalysis product, CMIP5, and CMIP6 model used in downscaling of tropical cyclones, including average horizontal
resolution and principal reference.

Institution ID Model name Model type Atmospheric resolution Reference

European Center for Medium-
Range Weather Forecasts

ECMWF ERA5 Reanalyses 0.25◦ × 0.25◦ [55]

NASA’s Global Modeling and
Assimilation Office

GMAO MERRA2 Reanalyses 0.5◦ × 0.625◦ [56]

National Center for Atmo-
spheric Research

NCAR CCSM4 CMIP5 1.25◦ × 0.94◦ [57]

NOAA Geophysical Fluid
Dynamics Laboratory

GFDL CM3 CMIP5 2.5◦ × 2.0◦ [58]

Met Office Hadley Center MOHC HADGEM2-ES CMIP5 1.875◦ × 1.25◦ [59]
Institute Pierre Simon Laplace IPSL CM5A-LR CMIP5 3.75◦ × 1.89◦ [60]
Atmosphere and Ocean
Research Institute (The Uni-
versity of Tokyo), National
Institute for Environmental
Studies, and Japan Agency
for Marine-Earth Science and
Technology

MIROC MIROC5 CMIP5 1.41◦ × 1.40◦ [61]

Max Planck Institute MPI MPI-ESM-MR CMIP5 1.875◦ × 1.865◦ [62]
Canadian Center for Climate
Modeling and Analysis

CANESM CanESM5 CMIP6 2.8◦ × 2.8◦ [63]

Center National de Recherches
Météorologiques

CNRM CNRM-CM6-1 CMIP6 1.4◦ × 1.4◦ [64]

EC-Earth consortium ECEARTH EC-Earth3 CMIP6 0.7◦ × 0.7◦

Institute Pierre Simon Laplace IPSL IPSL-CM6A-LR CMIP6 1.25◦ × 2.5◦ [65]
Center for Climate System
Research; University of Tokyo;
Japan Agency for Marine-
Earth Science and Technology;
National Institute for Environ-
mental Studies

MIROC MIROC6 CMIP6 1.4◦ × 1.4◦ [66]

Max Planck Institute MPI MPI-ESM1-2-HR CMIP6 0.94◦ × 0.94◦ [67]
Meteorological Research Insti-
tute (Japan)

MRI MRI-ESM2-0 CMIP6 1.12◦ × 1.125◦ [68]
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Appendix B Supplementary

Fig. B10 Mesh triangulation and depth (use a colormap to plot the color in log space)
for the BoB model.
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Fig. B11 Mesh triangulation and open boundaries for the BoB model.
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Fig. B12 Spatially varying Manning’s-N values at sea floor for the BoB model.

Fig. B13 Computational performance evaluation of the BoB model tested by a synthetic
TC track for increasing CPUs. All the synthetic TCs are finally simulated using 40 CPU (marked
red) cores for parallel.
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Fig. B14 Amplitude (background color, unit: m) and phase (cotidal lines with 30 incre-
ments) responses of the M2 (a), S2 (b), N2 (c), K1 (d) tidal waves. Five tidal constitutes are
activated in the harmonic analysis for the astronomic tide validation; only the first four tidal consti-
tutes’ results are shown here.
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Fig. B15 Root-mean-square error (m) of our model setup against the TPXO9-Altas for
the M2 (a), S2 (b), N2 (c) and K1 (d) tidal waves. Five tidal constituents are activated in the
harmonic analysis for the astronomic tide validation; only the first four tidal constituents’ results are
shown here.

Fig. B16 Maximum water level elevation during Sidr make landfall to Bangladesh.
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Fig. B17 Bangladesh’s storm tide against return period curves projected by CMIP5 and
CMIP6 models at the national scale. Storm tides are the water level elevations (only combining
components of astronomic tide and storm surge) relative to the mean sea level of the 1995-2014
baseline. a, CMIP5 models composite. b, CMIP6 models composite. c, Comparison between CMIP5
and CMIP6 models. Blue, orange, and red solid lines indicate the ensemble median (0.5 quantile)
for the current climate, CMIP5 RCP8.5 climate, and CMIP6 SSP5-8.5, respectively. Blue, orange,
and red shaded areas indicate each estimate’s confidence interval (CI, 0.1-0.9 quantile). The current
climate period spans from 1981 to 2000, while the future climate period spans from 2081 to 2100.

Fig. B18 Bangladesh’s storm tide against return period curves projected by CMIP5
and CMIP6 models at the regional scale. Storm tides are the water level elevations (only
combining components of astronomic tide and storm surge) relative to the mean sea level of the 1995-
2014 baseline. a, b, c, Projections for the Ganges (southwest Bangladesh). d, e, f, Projections for
the Meghna (middle Bangladesh). g, h, i, Projections for the Chattogram (east Bangladesh). a, d,
g, CMIP5 models composite. b, e, h, CMIP6 models composite. c, f, i, Comparison between CMIP5
and CMIP6 models. Blue, orange, and red solid lines indicate the ensemble median (0.5 quantile) for
the current climate, CMIP5 RCP8.5 climate, and CMIP6 SSP5-8.5, respectively. Blue, orange, and
red shaded areas indicate the confidence interval (i.e., 0.1-0.9 quantile) for each of these estimates.
The current climate period spans from 1981 to 2000, while the future climate period spans from 2081
to 2100.
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Fig. B19 Bangladesh’s 50-year, 100-year, 500-year storm tides projected by CMIP5 and
CMIP6 models at the station scale. Storm tides are the water level elevations (only combining
components of astronomic tide and storm surge) relative to the mean sea level of the 1995-2014 base-
line. a, b, c, 50-year return period. d, e, f, 100-year return period. g, h, i, 500-year return period. a,
d, g, stations located in the Ganges (southwest Bangladesh). b, e, h, stations located in the Meghna
(middle Bangladesh). c, f, i, stations located in the Chattogram (east Bangladesh). Projections are
conducted for all 54 stations, but the graph displays only every other station. Blue, orange, and red
histograms indicate the ensemble median (0.5 quantile) for the current climate, CMIP5 RCP8.5, and
CMIP6 SSP5-8.5 climate, respectively. Vertical error bars indicate each estimate’s confidence interval
(CI, 0.1-0.9 quantile). The current climate period spans from 1981 to 2000, while the future climate
period spans from 2081 to 2100. Base map sourced from the BDP 2100 (Baseline Volume 1, pg. 403),
Humanitarian Data Exchange, World Bank, ESRI ArcGIS, Maxar, Earthstar Geographics, USDA
FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community.

Fig. B20 Statistics for 100-year storm tides (without SLR) for the Ganges, Meghna,
and Chattogram regions.
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Table B3 Parameters used to distribute element resolution spatially

Edge length function Parameter

min reso 1 km
max reso 20 km

wave length 30
slope 10
filter -50
grade 0.35

feature width 3
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