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Abstract

This thesis is an exploration of two seemingly unrelated questions: First, how do
water vapor and ozone variations radiatively influence the thermal structure of the
tropopause region? Second, what sets the thermodynamic limits of tropical cyclone
intensity across the seasonal cycle? The link between these disparate subjects is
tropical cyclone outflow, which often reaches into the tropopause region and allows
the thermal structure to impact tropical cyclone potential intensity.

A radiative transfer model is employed to calculate the radiative effects of the 2000
and 2011 tropopause region abrupt drops—events where temperatures, water vapor,
and ozone plunge suddenly to anomalously low levels. Results show that radiative
effects partially offset in the region above the tropopause, but nonlocally combine to
cool the layers below the tropopause. Persistently low water vapor concentrations
associated with the abrupt drops spread to extratropical latitudes, and produce a
total negative radiative forcing that offset 12% of the carbon dioxide forcing over
1990-2013.

Next, the importance of nonlocal radiative heating/cooling for tropopause region
temperature seasonal cycles is examined. The radiative effects of water vapor sea-
sonality are weak and local to the tropopause, whereas ozone radiatively amplifies
temperature seasonality in the tropopause region by 30%, in part because strato-
spheric ozone seasonality nonlocally affects the tropopause region thermal structure.

To determine how the tropopause region thermal structure affects thermodynamic
limits on tropical cyclone intensity, this study computes and analyzes the first com-
prehensive seasonal cycle climatology of potential intensity. Outflow altitudes in
the Western Pacific are found near the tropical tropopause region throughout the
seasonal cycle, whereas other basins are less influenced by the tropopause region.
Probing the potential intensity environmental drivers reveals that the seasonality of
near-tropopause temperatures in the Western Pacific damps potential intensity sea-
sonal variability by ∼30%. Incorporating a best track tropical cyclone archive shows
this result is relevant for real-world tropical cyclones: the tropopause region thermal
structure permits intense Western Pacific tropical cyclones in every month of the year,
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which may have critical consequences for coastal societies.

Thesis Supervisor: Susan Solomon
Title: Lee and Geraldine Martin Professor of Environmental Studies
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Chapter 1

Overview

The famous "Blue Marble" image is at once stunning in its colorful contrast with

the dark depths of space, and evocative of our home planet’s vulnerability and isola-

tion. The striking hues of blue and white that cover Earth reveal the presence of the

molecule that sets our home planet apart from most others in the known universe:

water (Fig. 1-1a). Water is not only critical for life, but is also an essential piece of

the climate system in each of its three phases. The earth’s oceans regulate and store

heat. Clouds, ice, and snow strongly impact the Earth’s solar reflectivity. Tropical

cyclones and midlatitude storms redistribute atmospheric heat horizontally and ver-

tically. Water vapor is an extremely active radiative species and warms the surface

as a powerful greenhouse gas. (And this list is by no means comprehensive.)

Though it is likely the least obvious in the Blue Marble depiction, this latter

property of water vapor—its radiative effect—is perhaps most compelling. Water

vapor molecules are strong absorbers and emitters of longwave terrestrial radiation

(and to a much lesser extent, absorbers of solar radiation). Water vapor warms

the surface by emitting longwave radiation downward (its greenhouse effect) and

simultaneously net cools the middle troposphere by emitting radiation from relatively

warm atmosphere layers back out to space. This cooling effect persists with height,

though its magnitude falls off as temperatures cool and water vapor concentrations

are reduced. Temperature and water vapor are strongly linked through the Clausius-

Clapeyron relationship; vapor pressures which exceed the saturation vapor pressure
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(a function of temperature alone) will condense or deposit out, so as the temperature

falls off with the tropospheric lapse rate, water vapor concentrations do as well.

(a) (b)

Figure 1-1: (a) The "Blue Marble", a satellite composite true-color image of Earth.
Created by Stöckli, Nelson, and Hasler (2000, Laboratory for Atmospheres, Goddard
Space Flight Center, NASA). (b) A satellite composite of the 2015 "Ozone Hole"
on October 2nd. Created by the NASA Ozone Hole Watch (Goddard Space Flight
Center, NASA).

Rather than continue to fall off with height, higher in the atmosphere the tem-

perature profile warms considerably, in the region known as the stratosphere. Ozone

molecules, which are produced and reside in the stratosphere, dominate its thermal

profile through absorption of high energy solar radiation. This absorption is critical

for life on earth, as harmful ultraviolet rays are largely unable to penetrate the ozone

layer and reach the planet’s surface. Ozone also absorbs and emits longwave radia-

tion, a property which enables satellite observations to provide a global perspective

on ozone. Although satellites were not the first to discover the "ozone hole", in the

late 1980s they produced a second famous image in earth science (e.g. Fig. 1-1b)

which confirmed the extent of polar ozone depletion and helped galvanize public opin-

ion against ozone-destroying chlorofluorocarbons (Morrisette, 2009). The ozone hole

presents a clear narrative: ozone’s dominant radiative absorption and emission di-

minishes with reduced concentrations, presenting public health risks and altering the

stratospheric radiative budget. At low latitudes, lower stratospheric ozone depletion
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