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9 Inferences from historical records

@ Inferences from basic physics

@ Using physics to estimate risk



Prior to 1970, Many Storms Were Missed
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Major hurricanes in the North Atlantic, 1851-2016, smoothed using a 10-
year running average. Shown in blue are storms that either passed through
the chain of Lesser Antilles or made landfall in the continental U.S.; all other
major hurricanes are shown in red. The dashed lines show the best fit trend
lines for each data set.



Trends in Global TC Frequency Over Threshold Intensities, from
Historical TC Data, 1980-2016. Trends Shown Only When p < 0.05.
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Distance Northward from Equator (km)

Distance Southward from Equator (km)
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Basic Physics: Energy Production
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Theoretical Steady-State Maximum
Hurricane Wind Speed:
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Annual Maximum Potential Intensity (m/s)




Potential Intensity at Onset of Hurricane Irma
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Cumulative Frequency of Storm Lifetime Maximum
Intensity Normalized by Potential Intensity
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Trends in Thermodynamic Potential for Hurricanes, 1980-2010
(NCAR/NCEP Reanalysis)
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Projected Trend Over 21st Century: GFDL model
under RCP 8.5
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Inferences from Basic Theory:

o Potential intensity increases with global

warming

@ Incidence of high-intensity hurricanes should

Increase
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Using Physics to Estimate
Hurricane Risk



Not Use Global Climate Models to
Simulate Hurricanes?




Problem: Today’s models are far too coarse to simulate
destructive hurricanes
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Category 3

e

20 30 40 &0

Wind Speed (meters per second)

Modeled /

Observed

Histograms of Tropical
Cyclone Intensity as
Simulated by a Global
Model with 30 mile grid
point spacing. (Courtesy
Isaac Held, GFDL)

Global models do not

simulate the storms that

cause destruction



How to deal with this?

» Embed high-resolution, fast coupled
ocean-atmosphere hurricane model in
GCM or reanalysis data



RMS Intensity Errors, 2009-2015
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How Can We Use This Model to
Help Assess Hurricane Risk in
Current and Future Climates?



Risk Assessment Approach:

Step 1: Seed each ocean basin with a very large number
of weak, randomly located cyclones

Step 2: Cyclones are assumed to move with the large
scale atmospheric flow in which they are embedded, plus
a correction for the earth’s rotation and sphericity

Step 3: Run the CHIPS model for each cyclone, and note
how many achieve at least tropical storm strength

Step 4: Using the small fraction of surviving events,
determine storm statistics. Can easily generate 100,000
events

Details: Emanuel et al., Bull. Amer. Meteor. Soc, 2008



90N

70N

50N

30N

10N

10S

30S

50S

708

ERA Interim 1000

Tracks

40E

60E

I

80E

I

100E

I

120E

140E

160E

180E

160W



Cumulative Distribution of Storm Lifetime Peak Wind
Speed, with Sample of 1755 Synthetic Tracks
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Captures Much of the Observed North Atlantic Interannual Variability

Storm Maximum Power Dissipation

3-5 I I I I I I I
Observed
3r MIT Synthetic ” .
c
2 25+ r’=0.65 n g
©
o
]
2
T 2 i
2
2
wx 1.51 i
©
£
£
g 1r I
n
0.5 .

1980 1985 1990 1995 2000 2005 2010
Year



f - : . o 2
,igf;ﬁ-*’A_py_pllcatlon toHurricane Harvey

g’ o




Risk Assessment for Houston and Texas:

» Run 100 events for each year from 1980 to 2016 (3700
events total) passing within 300 km of Houston,
downscaled from three climate reanalyses

> Run 100 events each year from 1979-2015 passing over
the Texas coastline, downscaled from NCAR/NCEP
reanalyses. Calculate storm total rainfall for each event at
each of 78 points constituting a grid extending from 26° N
to 31° N and from 99° W to 94° W, at increments of 0.5°,
but excluding points over the Gulf

> Run 100 events each year during two periods: 1981-2000
and 2081-2100, passing within 300 km of Houston,
downscaled from six climate models



Example of Accumulated Rainfall from a Harvey-like Event
Downscaled from ERA Interim Reanalysis

ERA Interim Track Number 2640
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Probability of Storm Accumulated Rainfall at Houston, from 3 Climate
Reanalyses, 1980-2016 Based on 3700 Events Each. Shading shows
spread among the reanalyses.
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Probability of a Accumulated Hurricane Rain Anywhere in Texas,
based on 3700 Events Downscaled from NCAR/NCEP Reanalysis
with Rainfall Analyzed at 78 Points
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Probability of Storm Accumulated Rainfall at Houston, from 6
Climate models, 1981-2000 and 2081-2100, Based on 2000
Events Each. Shading shows spread among the models.
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Contributions to Changes in Annual Mean Hurricane Rainfall at Houston
from Changes in Overall Event Frequency and in Average Storm Rainfall
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Contributions to Changes in Hurricane Rainfall at Houston from Changes in
Updraft Speed, Water Vapor Content, and Storm Duration
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Hurricane Irma




Irma

» Run 100 events each year during two
periods: 1981-2000 and 2081-2100,
passing within 300 km of Barbuda,
downscaled from six climate models



Probabilities of Storms of Irma’s Intensity within 300 km of Barbuda,
from 6 Climate models, 1981-2000 and 2081-2100, Based on 2000
Events Each. Shading shows spread among the models.

Return Periods of Storms within 300 km of Barbuda
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Hurricane Mar




Maria

» Run 100 events each year during two
periods: 1981-2000 and 2081-2100,
passing within 150 km of 17°N, 64°W,
downscaled from four climate models



Return Period (years)

Return Period of TCs within 150 km of 17 N, 64 W
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Summary

o The observational record of hurricanes is too
short and noisy, and of a quality too low to
make robust inferences of climate signals

o Satellite data do show a migration of peak
intensity toward higher latitudes and some
indication of a greater fraction of intense
storms



Summary (continued)

o Potential intensity theory demonstrates that
the thermodynamic limit on hurricane
intensity rises with temperature

@ Observations show that this limit is indeed
Increasing

@ Physics can be used to model hurricane risk in
current and future climates



Summary (continued)

o Rain of Harvey’s magnitude in Texas was a ~ 1% annual
probability event in 1990 and is projected to increase to
15% by 2090. A linear increase in frequency yields a 5%
probability in 2017. (Observational studies by Risser and
Wehner, 2017 and van Oldenborgh et al., 2017, state
probability increases of at least 3.5 and 1.5-5,
respectively.)

o Irma’s peak winds of 160 kts within 300 km of Barbuda are
estimated to have had an annual probability of 0.13% in
1990, increasing to 1.3% in 2090

o Maria’s peak winds of 150 kts within 150 km of 17 N 64 W are
estimated to have had an annual probability of 0.5% in
1990, increasing to 5% by 2090.



Contact Information and Links

Email;: emanuel@mit.edu

Web: https://emanuel.mit.edu
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