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ABSTRACT

Recent research has shown that a variety of wavelike oscillations in the tropics may be explained by instabilities
driven by wind-induced surface heat exchange (WISHE). All such studies to date have implicitly assumed that
moist convection is in quasi equilibrium with the flow in question. Here that assumption is relaxed by accounting
for a small but nonzero lag between the large-scale forcing of convection and its response. Reaction times as
short as 30 minutes damp the higher-frequency Kelvin-like equatorial modes, favoring zonal wavenumbers 1-
4, and strongly bias the higher-order modes to westward-propagating disturbances of synoptic scale. An analysis
of off-equatorial disturbances reveals a preference for poleward- and westward-propagating modes with wavelengths

of the order of 1000 km.

1. Introduction

It has generally been assumed that the latent heat
released in cumulus clouds is the main energy source
for many tropical disturbances. Historically, this view
probably arose from the circumstance that convective
clouds were first studied intensively in North America,
where the particular geography allows for the accu-
mulation of large quantities of convective available
potential energy (CAPE). It was natural to assume that
this was so in the tropics as well, though the average
amount of CAPE is somewhat less. For many decades,
the origin of tropical disturbances was regarded as a
problem of determining the mechanism by which this
energy could be used to drive the circulations. Among
the most prominent theories of this kind is conditional
instability of the second kind (CISK), originally de-
veloped by Charney and Eliassen (1964) and Ooyama
(1964) in an attempt to explain the origin of tropical
cyclones. In essence, CISK works by selectively releas-
ing CAPE in regions where the large-scale circulation
happens to converge water vapor, repressing it else-
where.

There is increasing evidence that such a view is mis-
taken. In the first place, careful analysis of maritime
tropical soundings casts doubt on the existence of a
reservoir of CAPE (Betts 1982; Xu and Emanuel
1989). A more recent study by Randall and Wang
(1992) indicates that only a very small fraction of the
subcloud layer can convect before all of the available
potential energy of the atmosphere is used up. Even
more compelling is the observation by Arakawa and
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Schubert (1974) that the rate of change of CAPE in
the maritime tropical atmosphere is very much smaller
than what would occur if the destabilization of the at-
mosphere by large-scale processes were unopposed by
convection. This shows that the temperature of the
convecting atmosphere (and thus its mass distribution )
is determined by the condition that convection is in
statistical equilibrium with the large scale, and not by
the selective release of stored CAPE.

Compared to the small and perhaps nonexistent res-
ervoir of CAPE in the maritime tropics, the amount
of realizable energy represented by the thermodynamic
disequilibrium between the tropical oceans and at-
mosphere is huge. This is the energy source for hurri-
canes, as first pointed out by Kleinschmidt (1951) and
demonstrated quantitatively by Emanuel (1986). It is
natural to suppose that this large reservoir of energy is
also active in other types of tropical circulations. One
way of realizing this energy source is through the wind
dependence of the rate of transfer of enthalpy from the
ocean to the atmosphere, as is the case in hurricanes.
This mechanism has been called wind-evaporation
feedback by Neelin et al. (1987) and wind-induced
surface heat exchange (WISHE) by Yano and Emanuel
(1991), who wished to emphasize that, in principle,
the mechanism can work on the exchange of sensible
as well as latent heat.

The WISHE mechanism was proposed as an expla-
nation of the 30-50-day oscillation by Neelin et al.
(1987) and Emanuel (1987). They showed that the
enhancement of the mean surface easterlies ahead of
an eastward-propagating trough leads to enhanced
transfer of enthalpy from the ocean and associated
warming of the troposphere when this enthalpy increase
is distributed through the troposphere by convection.
In addition to this Kelvin-like mode, higher-frequency
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eastward- and westward-propagating modes were found
by Emanuel (1987). Goswami and Goswami (1991)
have proposed that some of these may be associated
with observed westward-propagating disturbances over
the western Pacific.

All of the aforementioned studies have assumed that
convection is in statistical equilibrium with the resolved
flow. Emanuel (1987) assumed further that the pre-
cipitation efficiency of the convection was 100% so that
no downdrafts are formed and the boundary-layer en-
thalpy is essentially unaffected by the convection. This
leads to the result that adiabatic cooling in ascent re-
gions is completely compensated by convective heating,
so that perturbations onto a convecting atmosphere
feel no bulk stratification. Yano and Emanuel (1991)
relaxed this restriction by allowing for downdrafts, and
showed that this causes the disturbances to feel a net
stratification that varies as the dry stratification mul-
tiplied by one minus the precipitation efficiency. Ear-
lier, Neelin et al. (1987) had used a small net stable
stratification justified by a different but consistent line
of reasoning. The importance of downdrafts was em-
phasized as well by Emanuel (1989), who presented
evidence that they prevent weak tropical disturbances
from becoming hurricanes. It seems probable that a
reasonable description of the dynamics of convecting
atmospheres must take into account the stabilizing ef-
fects of convective downdrafts.

Comparison of the linear WISHE modes with ob-
servations reveals some disturbing attributes of the
former. The eastward-propagating Kelvin-like mode
has its maximum growth rate at small scales, whereas
the observed phenomenon is of planetary scale. More-
over, the higher-order modes discussed by Emanuel
(1987) and more extensively by Goswami and Go-
swami (1991) show a strong preference for small-scale,
eastward-propagating waves, although westward-prop-
agating modes are allowed. Yano and Emanuel (1991)
showed that the shorter, Kelvin-like waves are strongly
damped by upward propagation into the stratosphere,
providing a planetary-scale bias for these modes.

The purpose of the present work is to demonstrate
that the relaxation of the quasi-equilibrium assump-
tion, by allowing for a small response time of convec-
tion to the large-scale forcing, strongly damps the high-
frequency WISHE modes, leaving intact essentially
three classes of unstable disturbances: equatorially
trapped long-wave Kelvin-like modes and synoptic-
scale westward-propagating # = 0 modes, and pole-
ward- and westward-propagating modal disturbances
that are not necessarily confined to the equatorial zone.
The linear equations are developed in section 2, while
solutions of these are presented in section 3. Section 4
provides a summary.

2. The linear model

We begin with the linear equations used by Yano
and Emanuel (1991, hereafter YE). These represent
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the linearization of the primitive equations on an
equatorial beta plane, with the mean state consisting
of a constant easterly wind in an atmosphere considered
to be in radiative-convective equilibrium. Here, for
simplicity, we drop all the damping terms. Following
Emanuel (1987) and YE, the atmosphere is always
considered to have a moist adiabatic temperature lapse
rate representing a saturation 6, equal to the actual 4,
of the boundary layer, and only the first baroclinic
mode is considered in the vertical structure. ( The higher
modes are forbidden by the assumption of the moist
adiabatic lapse rate). We also neglect upward radiation
of wave energy into the stratosphere. With these as-
sumptions, there is a strict relation between fluctuations
of the geopotential of the boundary layer and fluctu-
ations of subcloud-layer moist entropy, given by
0¢p = —CpTped(Inbep), (1)
where C, is the heat capacity at constant pressure, T
is the mean subcloud-layer temperature, 8, is the sub-
cloud-layer equivalent potential temperature, and ¢ is
given by
€= (Tb -

T)/Ts, (2)

where T is the mass-weighted tropospheric mean tem-
perature. (See Emanuel 1987 for a complete derivation
of this.)

Note that (1), which is a crucial feature of models
of this kind, is another way of expressing the quasi-
equilibrium hypothesis of Arakawa and Schubert
(1974). The only way for the convective available po-
tential energy of the atmosphere to remain constant is
for the entropy (8.) of the boundary layer to change
in concert with the mean virtual temperature of the
free atmosphere. This vertically integrated virtual tem-
perature is in turn related to the geopotential through
the hydrostatic condition. While measurements of 6,
in the tropics are not good enough to verify (1) directly
for observed amplitudes of §¢,, the quasi-equilibrium
hypothesis has been confirmed against observations
rather thoroughly (e.g., Arakawa and Schubert 1974,
693-694).

The linear equations for subcloud-layer zonal and
meridional wind, mass continuity, tropospheric tem-
perature, and subcloud-layer entropy are

a _ 3¢
(at+U )u— ax+,3yv, (3)
] _ 0 d¢
_+ N == - -
(az Uax)” oy P (4)
du Jv 1
__.+__..._ _
o +H (M. + My) = (5)
a_at+ U— 9 ) Ing = —N*M,, (6)
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where U is the mean zonal wind, u and v are the sub-
cloud-layer zonal and meridional wind perturbations,
¢ is the boundary-layer geopotential perturbation, ( is
the meridional gradient of the Coriolis parameter at
the equator, M, is the mass flux in convective clouds,
M, the mass flux outside of convective clouds, 6 the
average tropospheric potential temperature, g the ac-
celeration of gravity, N the buoyancy frequency of dry
air, H the thickness of the troposphere, H,, the altitude
of the entropy minimum, # the thickness of the sub-
cloud layer, C; the bulk surface heat exchange coeffi-
cient, ¢, the bulk precipitation efficiency, 6, the satu-
ration entropy of the ocean surface, and 8, is the 6, of
the subcloud layer. In addition, the total vertical ve-
locity is given by

w=M,+ M,. (8)

Finally, there is a relationship between fluctuations of
saturation entropy and of dry entropy (see Emanuel
1987):

61nd = (T,,,/T,)6 Inb¥ = (T',,/T)6 Inb,,, (9)

where 8% is the saturation entropy, T, and T'; are the
moist and dry adiabatic lapse rates, respectively, and
we have made use of the condition of moist neutrality.

The scaling relations developed by YE show that,
having dropped the damping terms, it is necessary to
also drop the left-hand side of (7) to be consistent.
This amounts to a quasi-equilibrium condition on the
subcloud-layer entropy, holding that the fluxes of en-
tropy from the sea surface are balanced by fluxes
through the top of the subcloud layer. (We stress that
this is a quasi-balance assumption; it does not imply
that there are no changes in subcloud-layer 6., for this
would negate all the physics of this model.) Neglecting
the left-hand side of (7) and using (8) to eliminate M,
yields a diagnostic relation for the cumulus mass flux:

Oes
N 7 CyIn b- sgn(0)u.
This shows that anomalies of the convective updraft
mass flux are forced by anomalies in the large-scale
ascent and by anomalies in the surface enthalpy flux
due to fluctuations of the zonal wind.

It is at this point that we introduce a time lag between
the forcing of convection and 'its response. Physically,
this may be regarded as a consequence of the time it
takes for clouds to form and precipitation to fall, in-
cluding perhaps the time scales associated with me-
soscale processes such as anvil formation and produc-
tion of precipitation. It is obviously not our purpose
to produce a detailed representation of these effects,

M, = ew+ —— (10)
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but only to demonstrate that they have important ef-
fects on WISHE modes. In keeping with the simplicity
of this model, we merely introduce a time lag between
the forcing of convection and its response; the right-
hand side of (10) is therefore evaluated with a time
lag:

[/] _
C,In =2 sgn(D)u

_ g
M. = N’H Bes ]

, (11)

1=t~

€W+

where 7 is the time lag. Observations suggest that this
time scale is of the order of 20 minutes to several hours
{Betts and Miller 1986).

It is instructive to see how this affects the response
of temperature to large-scale ascent and to surface
fluxes. We first substitute (9) into the temperature
equation (6) to express the latter in terms of subcloud-
layer entropy. We then use (8) to express M, in terms
of wand M,, and (11) for M. The result is

3 T,
R e ) Infey = = 5 N2 (W = W -1-)

T
TR 753 ln—sgn(U)u

I'.H Oep (12)

(=t—1

First, consider the case of 7 = 0. When the precipitation
efficiency ¢, is unity, large-scale vertical motion does
not affect the boundary-layer entropy by exciting
downdrafts, since the latter are not possible. In effect,
the boundary-layer processes control the free atmo-
sphere temperature. This was the case considered by
Emanuel (1987). At the opposite extreme, when ¢,
= 0, there can be no net heating by moist convection
and the boundary-layer entropy is forced by shallow
convection to track changes in free atmosphere tem-
perature, which in turn result from adiabatic warming
and cooling by the large-scale flow. The second term
on the right-hand side of (12) represents the effect of
anomalous surface fluxes of enthalpy on atmospheric
temperature, given that moist convection always dis-
tributes these changes aloft.

If the response time 7 is not zero, then both the
convective effects on the stratification and on distrib-
uting the surface fluxes aloft are lagged.

We now look for modal solutions of the form

ikx+ot
e rTer,

where o is a complex growth rate. We nondimension-
alize the dependent and independent variables as well
as the mean zonal wind U according to the scaling
given in Table 1, which also gives typical values of the
scaling parameters. In addition, we use (1) to eliminate
the geopotential. We also assume hereafter that the
background zonal wind is from the east. The resulting
set, derived from (3)-(5), (8), and (12) is

Du = ikT + vy, (13)
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TABLE 1. Scaling parameters.

Scaling factor
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Variable (see definitions below) Typical value
x HF/A 7000 km
y (I'FB)!g~12 1500 km
t (F/TB)H/A 1.6d
u F(HB/aA)'? 40ms!
v (4/aBH YT FB*' 8ms
w, M., M, H,(AB/Ha)'"* 4cms™!
¢ B(THF?/ad)'? 2000 m* s™2
in,, (THF */ad)"? 0.07
U (TFB)'\? 50 ms™*
Definitions: 4 = C, In(./8.s), B = €C,T», F = N2H,/g, T
= I'y/T.m, a = radius of earth.
Dy = P[— - yu] (14)
iku + B rw= 0, (15)
dy
DT = —w(l — e ")+ ue™ ™", (16)

where
D=g¢+ ikU

NZHm 3/2 0es -2
4 0eb

T ~1/2
X HZ(Fi EC,,T,,) ~ 25.
m

P=

(17)

In the above, T is the scaled version of In(#f,,). Note
that aside from the factor e~ 7" these equations are
identical to those used by Neelin et al. (1987), YE,
and Goswami and Goswami (1991). They may be
combined into a single equation in v:

dv 1 dv )
—_— —_— —_— k2 2+'k—cr‘r
a?  ox”dy D[PX( XT dke™™)
2 ik
+y—+—1——’—]=o, (18)
X cX o

where
X=1-—¢e 7.

By making the transformation

2
V=0 exp[4yx]

(18) may be transformed into the standard form

vl Lemy 1
dy? Y\x T a2 " Px

—oT

1
2 oX

X (o2 + xk? + ike ") + —l;lf] =0. (19)
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Provided that we demand that v —= 0 as y?> = 0, (19)
has standard solutions in terms of parabolic cylinder
functions. This entails the eigenvalue relation

l_

ikx —
l)(2

- %(02 + xXk? + ike™ ")

1/2
= +(2n + 1)()(02 +3 e~2'") , (20)

where # is an integer.

It can be seen that were it not for the exponent terms
in (20), it would be a sixth-order equation for the
complex growth rate o. If the time lag 7 is very small
compared to the time scales of the disturbances we are
interested in and we expand the exponent to first order:

e = 1—o7
9

the order of the equation does not change: it is still
sixth order. In general, however, the exponent terms
will yield more roots than the six that are present when
7 = 0, but these will involve very high frequencies of
order 1/7. This becomes unphysical in the sense that
by the time convection responds to the forcing, the
forcing may have changed sign. In practice, we will not
be concerned with these spurious very high-frequency
modes, confining our attention to modes with time
scales much longer than the convective time scale rep-
resented by 7. For these solutions, there are six roots
of (20) of which at least three are disallowed by the
boundary condition that v vanish at large . (In some
instances, more than three roots are forbidden.) Of the
allowed roots, usually one or two represent growing
modes.

Note that in all the solutions presented, the approx-
imation

lor| < 1

is verified extremely well.

We find the roots of (20) by an iterative procedure
in which a first guess is applied, the residual of (20) is
found together with its derivatives with respect to the
real and imaginary parts of the complex growth rate
g, and a new guess is made using these derivatives. The
eigenvalues thus found may be considered accurate to
within three significant figures. In addition, (20) can
be reduced to second order in the case n = —1, rep-
resenting the Kelvin-like modes. This can then be
solved exactly and the solution compared with that
found using the aforementioned procedure as a check
of the latter. Solutions to (20) will be presented in sec-
tion 3.

There is nothing in the WISHE mechanism that is
intrinsic to the equatorial beta plane. It is also instruc-
tive to examine local solutions to (18) valid far from
the equator. We can do this most easily by making a
WKB approximation to the solution of (18) valid in
the vicinity of a finite value of y; we accomplish this
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FIG. 1. (a) Growth rates and (b) phase speeds of the equatorial modes n = —1,n =0, and n
= | for zero convective response time (7) and P = 25, ¢, = 0.9. The nondimensional values are
given at left and typical dimensional values at right. )

by replacing y by y;in (18) and seeking modal solutions itself. Rather than seeking equatorially trapped solu-
of the form tions, we look for modes in the form of plane waves.
ol It is also convenient to rescale the meridional coordi-
’ nate y so that its scaling is the same as the scaling of
where / is a meridional wavenumber. This is equivalent  x. This is accomplished by making the transformation
to phrasing the original equations on a middle-latitude :
beta plane, ignoring the meridional dependence of beta y—> VP Y,
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FIG. 2. Asin Fig. 1 but for the n = —
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1 mode only, for three different values

of the convective response time (7).

where P is given by (17). The value of yp then gives
the local value of the Coriolis parameter. With these
substitutions, the first WKB eigenvalue relation from
(18)1is

>+ a(X(K? + I?) + P*yE + ike™"")

+ P(ilygpe™ + ™" — ikx) = 0. (21)

As we are interested in modes with time scales much
longer than the cumulus adjustment time scale =, we
approximate the exponential terms in (21) by

e 7" ~1—or.

For the solutions we will discuss, this is always an ex-
cellent approximation. Substituting this into (21) gives
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FIG. 3. As in Fig. 2 but for the n = 0 mode.

o + o e,k + 12) — ik] + o (1 — &) (k2 + %)
+ P?y§ + ik ~ Pr(ilyo + 1 + ike,))
+ Plilyo + 1 + ik(1 — )] =0, (22)

where we have made use of the definition of X. This

cubic equation is solved explicitly for the complex
growth rate o.

3. Solutions

We first examine solutions of the eigenvalue equa-
tion (20) pertaining to equatorially trapped modes. We
consider only the modes corresponding to n = —1, n
=0, and n = 1 for reasons to be discussed presently.
[Note that terminology such as “Kelvin wave” and
“mixed Rossby—-gravity wave” is avoided here because
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F1G. 4. As in Figs. 2 and 3 but for the n =1 mode. (Phase speed curve
for r = 0.025 indistinguishable from = = 0.05.)

such terminology can be misleading. As shown by
Emanuel (1987), the WISHE mechanism itself gives
rise to propagation even in the absence of potential
vorticity gradients and gravitational stratification. For
this reason, we will refer to the equatorially trapped
modes only by their mode number, where it is under-
stood that in the classical theory of stable equatorial

waves n = —1 corresponds to the Kelvin wave, n = 0
to the mixed Rossby—gravity wave, and higher values
of n to inertia—gravity waves.] In all cases, only one
unstable branch for each value of n was found in a
domain in which the zonal wavenumber k varies from
minus to plus infinity, excluding the disallowed modes
that do not decay at large y.
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Figure 1 shows the growth rates and phase speeds of
the first three modes, as functions of the zonal wave-
number, in the case that r = 0. These pertain to the
case that P = 25 and ¢, = 0.9, but it can be shown that
when 7 = 0, € can be absorbed in the scaling.! Thus,
the curves in Fig. 1 can be considered to vary with P
only. The » = —1 mode is the one proposed by Neelin
etal. (1987)and Emanuel (1987) as possibly associated
with the 30-50-day oscillation in the tropics; YE
showed that when the troposphere is coupled to a
stratosphere into which wave propagation is allowed,
these modes have a short-wave cutoff and growth rates
that peak at the planetary scale. There are no allowed
westward-propagating solutions at n = —1.

The higher-order modes have generally smaller
growth rates and higher frequencies. The n = 0 waves
have a continuous spectrum of westward-propagating
modes, but the waves that propagate eastward have
higher growth rates. The n» = 1 modes are strongly
biased toward eastward propagation, though some
weakly growing westward-propagating modes occur at
planetary scales. All but the # = —1 modes have finite
nonzero frequencies when k = 0.

Note that in no case is a growth rate peak observed
at finite zonal wavenumber.

The effect of convective time lags on the n = —1
mode is shown in Fig. 2, which depicts the growth rates
and phase speeds for two values of 7, corresponding
dimensionally to about 1 and 2 h, respectively. ( These
also pertain to the case P = 25, and ¢, = 0.9; when 7
is nonzero, there are three independent dimensionless
parameters instead of one.) The effects are dramatic.
The higher-frequengy modes are strongly damped,
leaving only planetary-scale waves. Phase speeds are
hardly affected in the range of k of growing modes. The
effects are similar to those of coupling with the strato-
sphere (see YE), but quantitatively stronger for very
modest response times.

Figures 3 and 4 show the effects of response time on
the higher-order modes. The eastward-propagating
component of the n = 0 wave is virtually eliminated,
leaving westward-propagating modes over a broad
range of zonal wavenumbers, from the planetary down
to the synoptic scale, but phase speeds of these modes
are hardly affected by convective response time. These
phase speeds are very modest near the wavenumbers
of peak growth. The intrinsic frequency of these modes
is negative and decreases in magnitude with increasing

! Although the quantization of zonal wavenumber is lost, the

transformations u =~ (1 ~ ¢)u, v = (1 — &), T - (1
— )T,y = (1= &)y, k> (1 = ¢) 'k, D > (1 — ¢,)"'/2D,
together with a redefinition of P, P’ = P(1 — ¢p)3?, render

(13)-(16) a function of the single nondimensional parameter P’
when 7 = 0. Neither YE nor Goswami and Goswami (1991) seem
to have recognized that their equations, without the damping terms,
could be reduced to a one-parameter set.
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wavenumber; thus, the group velocity of the n = 0
mode is eastward. The n = 1 mode exists only over a
finite range of k when 7 is positive; outside this range
these modes are disallowed by the condition that their
amplitude decay at large y2. For these modes as well,
the eastward-propagating components are virtually
eliminated, and their growth rates are comparable to
those of the #» = 0 modes. Their phase speeds, however,
are dramatically reduced by nonzero convective re-
sponse times.

The spatial structure of the modes described here
are in most respects very similar to their counterparts
in the classical stable modes of the equatorial waveguide
and to the solutions discussed by Neelin et al. (1987)
and thus will not be dwelled upon here. We do note,
however, that when 7 is one or larger, the modes have
no amplitude on the equator and generally exhibit peak
amplitudes in the subtropics and middle latitudes,
where they generally have rapid meridional variation.
For this reason, the WKB analysis of (18), resulting
in the eigenvalue equation (22 ), seems particularly ap-
propriate. [Recall that the y coordinate has been re-
scaled so that it has the same scale as the x coordinate
(see Table 1). Also, the quantity e™°" has been ap-
proximated by 1 — a7 (see section 2).]

The solutions of the cubic equation (22), pertaining
to WISHE modes on a middle-latitude beta plane, ex-
hibit two classes of growing modes: low-frequency
eastward-propagating waves and high-frequency waves
that always propagate poleward and may have eastward
or westward components of propagation as well.

Figure 5 displays the growth rates and phase speeds
of only the most rapidly growing mode over a particular
range of zonal and meridional wavenumbers. These
are for the case that the response time 7 is zero, P = 25,
& = 0.9, and y, = 0.6, the last corresponding to the
value of the Coriolis parameter at about 40°N latitude.
In this case, the eastward-propagating low-frequency
mode has the highest growth rates. The growth rate
asymptotes to the same value as does the equatorial #
= —1 mode for very large k and / = 0, but for the finite
range of k illustrated in Fig. 5, growth rates are higher
at positive values of /. This shows that the most unstable
modes at finite zonal wavenumber have a northwest—
southeast tilt in the Northern Hemisphere; these are
just the manifestations of the n» = —1 equatorial mode,
whose eigenfunctions tilt in the same direction at higher
latitudes.

The growth rates and phase speeds of the westward-
propagating unstable modes over a particular range of
zonal and meridional wavenumber are shown in Fig.

6 for the same parameters as in Fig. 5. In this case there

is a broad growth rate peak at a zonal wavenumber of
about 50 and a meridional wavenumber near 40. These
are poleward- and westward-propagating modes whose
growth rates and phase speeds are much smaller than
those of the eastward-moving wave. The dimensional
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'FIG. 5. Solutions of the WKB dispersion relation (22) on the mid-

latitude beta plane. This shows the (a) dimensionless growth rate

nd (b) magnitude of the phase speed of the unstable eastward-prop-

agating mode, in a particular region of the k ~ / wavenumber plane,

/ for zero convective response time (7) and for P = 25, ¢, = 0.9, and

¥o = 0.6. Note that in this analysis the y coordinate has been rescaled
to have the same scale as the x coordinate in Table 1.

wavelength of the most rapidly growing mode is about
1000 km, and the phase speed relative to the flow is
only about 1 m s™'. The growth rate is, however, much
smaller than the damping terms omitted in this anal-
ysis, so that it is unlikely that these would be observed.

Once again, the effect of small convective response
times is dramatic, as illustrated in Figs. 7 and 8. Asin
the case of the equatorially trapped modes, all but the
longest eastward-propagating modes are damped and
the most unstable mode has growth rates of the same
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order as the omitted damping terms. In this case, a
center of very high growth rates occurs at small, neg-
ative meridional wavenumbers, indicating equatorward
and eastward propagation. But these modes have fre-
quencies that are extremely small, of order one-half
day, and thus violate the assumption that the wave
periods are much longer than the convective response
time. These solutions are therefore unphysical and
should be discarded.

As shown in Fig. 7, however, the poleward- and
westward-propagating disturbances are enhanced by
small convective response times, achieving growth rates
comparable to expected damping rates. Moreover, this

100

100

0
-100

FIG. 6. As in Fig. 5 but showing the unstable westward-propagating
branch over a portion of k — [ wavenumber space. Note different
ranges of k and /.
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FIG. 7. As in Fig. 5 but for convective response time () of 0.025.
An unstable root highly localized in the region of small k has been
omitted; see Fig. 8. Phase propagation is poleward; westward for neg-
ative k and eastward for positive k. Note different ranges of k and /.

branch of unstable modes now extends into the east-
ward-propagating sector. All of these modes, which in-
clude zonally symmetric modes, propagate poleward.
Flow-relative phase speeds are of the order of 1 m s~}
and wavelengths are still of order 1000 km. The group
velocities of these modes (not shown ) vary considerably
over the range of scales shown in Fig. 7, but near the
wavelengths of maximum growth the wave energy
propagates very slowly southeastward for the param-
eters used in Fig. 7. For all practical purposes, the wave
energy associated with the poleward- and westward-
propagating modes travels with the mean wind.
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4. Discussion

The WISHE mechanism, by tapping the very large
reservoir of energy associated with the thermodynamic
disequilibrium between the tropical oceans and at-
mosphere, offers a promising explanation for a variety
of tropical disturbances. Besides hurricanes, which
certainly operate on this mechanism, phenomena as
diverse as the 40-50-day oscillation and westward-
moving synoptic-scale disturbances may owe their ex-
istence to WISHE. Here we have shown that linear
WISHE modes are sensitive to the time it takes con-
vection to respond to the large scale, even though this
time may be very small compared to the time scales

-3

o

4

k

FIG. 8. As in Fig. 7 but showing the other unstable root. Note
different ranges of k and /.
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of the disturbances in question. Though quasi equilib-
rium may be almost exact in the tropics, the very small
disequilibrium between convection and the large-scale
processes that sustain it has a large effect on tropical
disturbances, according to the present analysis.

It is not difficult to understand why this is so. In the
conceptual and physical framework developed by
Neelin et al. (1987), Emanuel (1987), and YE, the
dominant effects on the frequency of linear tropical
waves are the gradient of potential vorticity (beta) and
the effective stratification of the tropical troposphere
to deep perturbations, which is positive even when
convection is accounted for, because the downdrafts
associated with convection cause a reduction of the
entropy of the subcloud layer and hence of the tem-
perature of the free atmosphere, which is held close to
a neutral state by convection. Even the reduced effec-
tive stratification, however, is a strong influence on
wave frequencies.

The growth of unstable waves, on the other hand, is
controlled by the comparatively small variations in at-
mospheric temperature that result from variations in
the surface enthalpy flux coupled with convective re-
distribution of heat. The phase relationships of these
fluxes to the waves’ temperature perturbations give rise
to both growth (or decay) and propagation, as a general
rule, although the latter effect is usually small compared
to the aforementioned effects.

In a state of perfect statistical equilibrium, the con-
vection induced by large-scale ascent in waves is exactly
out of phase with the temperature perturbations as-
sociated with the waves. This affects their rate of prop-
agation, but does not contribute to growth or decay.
When the convection lags behind the forcing by even
a small amount, however, its occurrence is biased
slightly toward the regions of negative temperature
perturbations. The resulting negative correlation be-
tween temperature and heating is a negative effect on
the wave growth. Clearly, the magnitude of this effect
depends on the relative magnitudes of the response
time of the convection and the period of the wave. The
damping is particularly strong when the wave period
is short. As the frequencies of WISHE modes tend to
be larger than their growth rates, the damping effect of
small convective response times can be large compared
to quasi-equilibrium growth rates.

Although the phase lag acting on the component of
convection forced by large-scale ascent always acts to
damp the waves (at least in barotropic environments),
the phase lag acting on convection forced by surface
enthalpy flux anomalies may in some circumstances
act to increase the growth of the waves. This is especially
true for the lower-frequency westward-propagating
waves, whose growth is enhanced by nonzero convec-
tive response times, both in the case of equatorially
trapped waves and waves on a middle-latitude beta
plane.
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The net result of including a small convective re-
sponse time is to favor the following WISHE modes
in a background of constant easterly flow:

1) Kelvin-like, (n = —1) eastward-propagating
equatorially trapped waves of small zonal wavenumber.
The phase speed of such waves is sensitive to the as-
sumed precipitation efficiency of convection, but values
in the range 10-20 m s™! are typical. These were pro-
posed as explanations of the 30-50-day oscillation in
the equatorial zone by Neelin et al. (1987) and Eman-
uel (1987).

2) Westward-propagating equatorially trapped = 0
modes similar to mixed Rossby gravity waves. De-
pending on the convective response time, these are un-

‘stable over a broad frequency and zonal wavenumber

range. In dimensional terms, wavelengths in the range
of 2000 to 10 000 km and flow-relative periods of 5-
10 days (3~7 days for an observer fixed with respect
to the earth) are indicated. Goswami and Goswami
(1991) suggested that such modes might be associated
with various observed westward-moving disturbances
in the tropics.> The time and space scales of these
WISHE modes, their spatial structure, westward phase
speed, and eastward group velocity are all in accord
with the observational analysis of Liebmann and Hen-
don (1990). _

3) A variety of poleward-propagating synoptic-scale
(1000-km) disturbances not necessarily trapped around
the equator. There is a preference for westward prop-
agation, although eastward-propagating modes and
zonally symmetric modes occur as well. Flow-relative
phase speeds and group velocities are very small (0.5-
1 m s™"), so that these disturbances may be considered
to move approximately with the mean flow. As typical
growth rates are not much larger than expected damp-
ing time scales (the linear damping terms have been
omitted in the present analysis), the WISHE mecha-
nism may play a greater role in sustaining, or slowing
the decay of, disturbances generated by other mecha-
nisms. WISHE may, for example, sustain easterly
waves generated over Africa as they move westward
over the Atlantic.

The results presented here suggest that strong dis-
tortions of tropical wave activity may occur in nu-
merical models in which the quasi equilibrium of con-
vection is rigorously enforced, as in models using the
convection scheme of Arakawa and Schubert (1974).

Unfortunately, it is difficult to devise field experi-
ments or uses of previously obtained experimental da-
tasets that are capable of rejecting most of the extant

2 Goswami and Goswami (1991) reported growth rate peaks at
finite zonal wavenumber for the n = 0 mode with no convective lag.
This result is not confirmed here, at least for the value of P used in
this analysis.
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hypotheses on the formation and maintenance of trop-
ical wave disturbances. Part of the problem is that the
virtual temperature perturbations associated with such
waves are too small to be observed directly with any
accuracy. For disturbances whose flow-relative fre-
quencies are smaller than the local value of the Coriolis
parameter, including virtually all the easterly waves
discussed in the literature, the density fluctuations
could in principle be derived from the observed wind
field, provided the observations are of sufficient accu-
racy and extent. This would be a major step toward
testing the various theories proposed to explain the
waves.

Testing the WISHE hypothesis against CISK poses
its own difficulties. In both theories, convection is al-
most entirely in phase with the large-scale vertical mo-
tion; the phase shift due to surface flux anomalies that
is responsible for growth in the WISHE framework is
probably too slight to be observed. A conclusive test
would be to determine the relative phase of free at-
mosphere virtual temperature perturbations and sub-
cloud-layer entropy anomalies; in CISK these would
be negatively correlated while in WISHE they would
be correlated positively. Unfortunately, the accuracy
of subcloud-layer humidity measurements is probably
too small, since a one-degree free atmospheric tem-
perature perturbation is associated with a subcloud-
layer relative humidity fluctuation of only about 1%
or 2%. Time series of very high quality temperature
and moisture soundings in regions experiencing the
wave disturbances might provide an adequate test.
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