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ABSTRACT

While many studies of the effects of global warming on hurricanes predict an increase in various metrics of

Atlantic basin-wide activity, it is less clear that this signal will emerge from background noise in measures of

hurricane damage, which depend largely on rare, high-intensity landfalling events and are thus highly volatile

compared to basin-wide storm metrics. Using a recently developed hurricane synthesizer driven by large-scale

meteorological variables derived from global climate models, 1000 artificial 100-yr time series of Atlantic

hurricanes that make landfall along the U.S. Gulf and East Coasts are generated for four climate models and

for current climate conditions as well as for the warmer climate of 100 yr hence under the Intergovernmental

Panel on Climate Change (IPCC) emissions scenario A1b. These synthetic hurricanes damage a portfolio of

insured property according to an aggregate wind-damage function; damage from flooding is not considered

here. Assuming that the hurricane climate changes linearly with time, a 1000-member ensemble of time series

of property damage was created. Three of the four climate models used produce increasing damage with time,

with the global warming signal emerging on time scales of 40, 113, and 170 yr, respectively. It is pointed out,

however, that probabilities of damage increase significantly well before such emergence time scales and it is

shown that probability density distributions of aggregate damage become appreciably separated from those of

the control climate on time scales as short as 25 yr. For the fourth climate model, damages decrease with time,

but the signal is weak.

1. Introduction

Several lines of evidence suggest that anthropogenic

climate change may have a substantial influence on trop-

ical cyclone activity around the world. Global warming

generally increases the thermodynamic potential for

tropical cyclones (Emanuel 1987), while changing at-

mospheric circulation, humidity, and other factors affect

both the probability of genesis and the subsequent evo-

lution of the storms (Emanuel 2007; Vecchi and Soden

2007). Strictly thermodynamic considerations lead to the

expectation that, globally, tropical cyclone frequency

should diminish, but the incidence of high-intensity

events should increase (Emanuel et al. 2008). There is

already evidence that the fraction of high-intensity

storms is indeed increasing (Webster et al. 2005; Elsner

et al. 2008), although the global total number of

tropical cyclones has not so far exhibited any signifi-

cant trend (Emanuel 2005). In the North Atlantic re-

gion, where tropical cyclone records are longer and

generally of better quality than elsewhere, power dissi-

pation by tropical cyclones is highly correlated with

sea surface temperature during hurricane season in

the regions where storms typically develop (Emanuel

2005) and with the difference between the local sea

surface temperature and the tropical mean sea surface

temperature (Swanson 2008; Vecchi et al. 2008). The

author has argued that in the North Atlantic region, the

decadal variations of the sea surface temperature itself

appear to be driven mostly by anthropogenic changes in

greenhouse gases and aerosols (Mann and Emanuel 2006;

Emanuel 2008). Other studies hold attribution of past

changes in tropical cyclone activity to anthropogenic cli-

mate change to be equivocal (Knutson et al. 2010).

Quite a few attempts have been made to use global

climate models to make projections of the response of

tropical cyclones to global warming. One method simply

detects explicitly simulated storms in the models and

notes how their levels of activity change with climate.

This approach has been taken by numerous groups (e.g.,
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Bengtsson et al. 1996; Sugi et al. 2002; Oouchi et al. 2006;

Yoshimura et al. 2006; Bengtsson et al. 2007) and is be-

coming more popular as the horizontal resolution of

global climate models improves. But even horizontal grid

spacing as low as 20 km (Oouchi et al. 2006) cannot re-

solve the critical eyewall region of the cyclones, and in-

variably the maximum wind speed of simulated storms is

truncated at relatively low values by the lack of horizontal

resolution (Zhao et al. 2009). Recent work by Rotunno

et al. (2009) suggests that horizontal grid spacing of less

than 1 km is needed to properly resolve intense storms.

A second approach to the problem is to use statistical

relationships between tropical cyclones and large-scale

predictors to estimate tropical cyclone activity as a func-

tion of variables that are resolved by climate models

(e.g., Camargo et al. 2007a,b). One potential drawback

of this approach is that the statistics are trained largely

on natural variability, much of which is regional; it is not

clear that such indices will perform well when applied to

global climate change.

Another approach to quantifying the relationship be-

tween climate and tropical cyclone activity is to ‘‘down-

scale’’ tropical cyclone activity from reanalysis or climate

model datasets, as pioneered by Knutson et al. (2007)

and Emanuel et al. (2008). Such techniques involve run-

ning high-resolution, detailed models capable of resolving

tropical cyclones, using boundary conditions supplied by

reanalysis or climate model datasets. This combines the

advantage of relatively robust estimates of large-scale

conditions by the reanalyses or climate models with the

high-fidelity simulation of tropical cyclones by the em-

bedded high-resolution models. As shown by Knutson

et al. (2007) and Emanuel et al. (2008), these techniques

are remarkably successful in reproducing observed trop-

ical cyclone climatology in the period 1980–2006, partic-

ularly in the North Atlantic region, when driven by the

National Centers for Environmental Prediction–National

Center for Atmospheric Research (NCEP–NCAR) re-

analysis data (Kalnay et al. 1996). A recent comparison

between storms produced explicitly in a high-resolution

global simulation and those downscaled from the same

global model (Emanuel et al. 2010) confirms that even at

grid spacing of 14 km, global models truncate the im-

portant high-intensity end of the spectrum of tropical

cyclones, and reveals substantial differences between the

explicit and downscaled storm activity.

The general conclusion from all of these studies is

that while the global frequency of tropical cyclones is

likely to diminish, the frequency of high-intensity events

will probably increase as the planet continues to warm

(Knutson et al. 2010). Since most wind-related damage is

owing to high-intensity events, this would imply an in-

crease in wind damage. On the other hand, there is large

regional and model-to-model variability in projections of

climate change effects on tropical cyclones, so confidence

in any regional projection must be correspondingly low.

For the North Atlantic, a downscaling of a set of global

climate model projections shows that five out of seven of

the models predict substantial increases in power dissi-

pation over the twenty-first century (Emanuel et al. 2008),

while a recent downscaling using a comprehensive tropical

cyclone model run on a 9-km mesh shows a near doubling

of the frequency of high-intensity events (Bender et al.

2010). Thus, the weight of current evidence suggests

a possibly substantial increase in damaging Atlantic

hurricanes over the current century, though uncertainty

remains large.

While basin-wide metrics of tropical cyclone activity

show statistically robust changes in the aforementioned

model-based projections and may already be evident in

observations, there is little evidence for a trend in tropical

cyclone–related damage in the United States (Pielke

et al. 2008). This is not surprising, as most wind-related

damage is done by tropical cyclones that happen to be

at high intensity at the time they make landfall. This is a

small subset of all storms over a relatively small frac-

tion of their typical life spans, thus the statistical base

of potentially damaging events is small compared to

that of the basin-wide set of storms. These findings beg

the question of how long it would take for any climate

change signal to emerge from background natural

variability in damage statistics. This question was ad-

dressed recently by Crompton et al. (2011), who con-

cluded that it will take between 120 and 550 yr for

such a signal to emerge in U.S. tropical cyclone losses.

They arrive at their findings using a relationship be-

tween normalized losses and the Saffir–Simpson cat-

egory derived from past events, and applying that

relationship to projected changes in Atlantic storm

activity assuming that fractional changes in the fre-

quency of landfalling events in each category are the

same as that of all storms in the North Atlantic. Thus

the technique cannot account for possible changes

in the tracks of storms, which may change the frac-

tion of all events that make landfall as well as the

specific locations of landfall. Moreover, quantization

of storms into only five categories, with most of the

damage being done by storms of the highest three

categories, may alter the signal because it misses

changes within categories. (For example, an increase of

intensity within category 5, which is open ended, would

presumably cause increased damage even if the number

of landfalling category 5 storms remained constant.) These

limitations motivate the present study, which applies

somewhat different methods to the problem, as described

in the next section.
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2. Method

Here we apply the tropical cyclone downscaling tech-

nique of Emanuel et al. (2008). Briefly, this method em-

beds a specialized, atmosphere–ocean coupled tropical

intensity model in the large-scale atmosphere–ocean en-

vironment represented by the global climate model data.

The tropical cyclone model is initialized from weak,

warm-core vortices seeded randomly in space and time,

and whose movement is determined using a beta-and-

advection model driven by the flows derived from the cli-

mate model daily wind fields. The thermodynamic state

used by the intensity model is derived from monthly mean

climate model data together with current climatological

estimates of ocean mixed layer depths and submixed layer

thermal stratification; these ocean parameters are held

fixed at their current climatological values. Wind shear,

used as input to the intensity model, is likewise derived

from the climate model wind fields. In practice, a large

proportion of the initial seeds fail to amplify to at least

tropical storm strength and are discarded; the survivors are

regarded as constituting an estimate of the tropical cyclone

climatology for the given climate state.

We apply this method to each of four climate models,

generating enough seeds to produce 5000 U.S. landfalling

storms in each case. The models are the Centre National

de Recherches Météorologiques Coupled Global Cli-

mate Model, version 3 (CNRM-CM3); the ECHAM5

model of the Max Planck Institution; the Geophysical

Fluid Dynamics Laboratory Climate Model version 2.0

(GFDL CM2.0) of the National Oceanic and Atmospheric

Administration (NOAA) Geophysical Fluids Dynamics

Laboratory; and the Model for Interdisciplinary Re-

search on Climate 3.2 (MIROC 3.2) of the Center for

Climate System Research (CCSR), University of Tokyo/

National Institute for Environmental Studies (NIES)/

Frontier Research Center for Global Change (FRCGC),

Japan. We chose these four models from the set of seven

models used by Emanuel et al. (2008), which were in turn

selected based on the availability of model output needed

by the downscaling technique; the four used here are

broadly representative of the larger set of seven. We

apply the downscaling to simulations of the twentieth-

century climate, using model output for the period 1981–

2000, and to simulations of a warming climate under

the Intergovernmental Panel on Climate Change (IPCC)

Special Report on Emissions Scenarios (SRES) A1b,

using model output from the period 2081–2100. We use

these synthetic events to construct 1000 stationary time

series each of 100-yr length, representing the climate

averaged over 1981–2000 and over 2081–2100, respec-

tively. We construct the time series by randomly drawing,

each year, from a Poisson distribution based on the

overall annual frequency of events in the set. The 1000-

member ensemble is created by repeating the process

using different random draws from the Poisson distribu-

tion each year. Thus we have a total of one thousand

100-yr time stationary series for each of four climate

models for each of two time frames. As detailed below,

we will use these time series to create one thousand

100-yr time series of damage in an evolving climate by

linearly combining the two stationary time series sets

with a weighting that varies linearly in time.

We note here that the intent is to distinguish climate

change–induced trends from background short-term ran-

dom variability. We do not attempt to account for other

sources of systematic climate change, such as changing

solar or volcanic activity, or long-period natural variability,

such as the Atlantic Multidecadal Oscillation (AMO); in

this respect we use the same assumptions as did Crompton

et al. (2011). We simply note that detecting any signal of

anthropogenic climate change, not just one that might be

present in tropical cyclone statistics, requires one to ac-

count for other forced changes, and that long-period nat-

ural variability, such as the AMO, cannot meaningfully be

considered noise in this context. If it exists and is impor-

tant, its influence can, in principle, be quantified and ac-

counted for; if it cannot be quantified then one must give

up on any exercise in climate change attribution on these

time scales.

Next, we allow the simulated storms to interact with

a portfolio of insured property: the Industry Exposure

Database, produced by Risk Management Solutions,

Inc. (A. Lang 2009, personal communication). This con-

sists of estimates of total insured values for each zip code

and county in the United States and for each postcode

in Europe, using sampled company premium informa-

tion, census demographics and economics data, building

square footage data, and representative policy terms and

conditions. These total insured values and other variables

are then aggregated into 100 zones distributed along the

U.S. Gulf and East Coasts, whose locations are shown in

Fig. 1.1 These locations represent roughly the population-

weighted geographical centers of the zones. For simplicity,

we model the damage in a given zone according to the

wind experienced at the position of the zone center. For

each tropical cyclone event, we use a wind damage func-

tion, described presently, to estimate the fractional loss of

value in each zone, and multiply this by the total insured

value of property in that zone. This gives an estimate of the

total amount of damage in U.S. dollars caused by each

event in each zone; the total insured damage from an event

1 The original data are proprietary, and this aggregation was done

by the provider to allow it to be used for the present purpose.
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is then the sum of this quantity over all zones. A drawback

of this approach is that aggregating the building values

into zones represented by points will make the damage

more volatile than it should be, as some strong storms will

pass between the zone centers and do little damage there,

whereas in reality some of the insured property between

zone centers will experience high winds. This increased

volatility will decrease the climate signal-to-noise ratio and

make the damage probability density functions broader

than they ought to be.

Property damage from wind storms is observed to in-

crease quite rapidly with wind speed. Empirical studies

relating wind to damage suggest a high power-law de-

pendence of damage on wind speed (Pielke 2007). For

example, Nordhaus (2010) estimates that damage varies

as the ninth power of wind speed for wind damage in the

United States. In reality, most structures in the United

States and many other countries are built to withstand

frequently encountered winds; it is highly unlikely, for

example, that a wind of 20 kt would do any damage at all.

Thus, we consider a damage function that produces

positive values only for winds speeds in excess of a

specified threshold. On physical grounds, we expect that

damage should vary as the cube of the wind speed over

a threshold value. Finally, we require that the fraction of

the property damaged approach unity at very high wind

speeds; in any event, we cannot allow it to exceed unity. A

plausible function that meets these requirements is

f 5
y3

n

1 1 y3
n

, (1)

where f is the fraction of the property value lost and

yn [
MAX[(V 2 Vthresh), 0]

Vhalf 2 Vthresh

,

where V is the wind speed, Vthresh is the wind speed at

and below which no damage occurs, and Vhalf is the

wind speed at which half the property value is lost. This

function is plotted in Fig. 2, for Vthresh 5 50 kts and two

values of Vhalf. These functions are highly idealized; in

reality, property damage depends on much more than

the peak wind speed experienced during a storm (e.g., the

direction of the wind, its degree of gustiness, and the

duration of damaging winds all influence the amount of

damage). Also, we do not consider damage from fresh-

water flooding or storm surge, though the latter is, to

some extent, also a nonlinear function of wind speed. The

damage functions illustrated in Fig. 2 can be compared

to damage functions derived from theory and from in-

surance claims data as reviewed by Watson and Johnson

(2004). By varying Vhalf, we will explore the sensitivity

of the results to the damage function.

Using this damage function and the property values

from the Industry Exposure Database in conjunction

with the two synthetic tropical cyclone events sets for

each of the four models, we derive a total of one thou-

sand 100-yr time series of U.S. insured property damage

for each model and for each of the two climates con-

sidered. Then, for each ensemble member, we blend the

two 100-yr time series representing the two climates into

a single time series by linearly combining the two dam-

age amounts assuming that the transition from one

climate to the other occurs linearly over 100 yr; thus,

the damage in each year is a weighted average of the

damage from each climate state, with the weight

varying linearly with time. This results in a total of one

thousand 100-yr time series for each of the four models,

each representing a transitioning climate. We use these

FIG. 1. Locations of zone centers (black dots) used for estimating

hurricane damage. FIG. 2. Fraction of property value lost as a function of winds

speed using Eq. (1) with Vthresh 5 50 kts and Vhalf 5 150 kts (solid)

and Vhalf 5 110 kts (dashed).
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time series to evaluate the emergence of global warm-

ing signals. As in the work of Crompton et al. (2011),

we assume that the noise against which the global

warming signal is measured is random variability on

time scales ranging up to a few years (e.g., including

ENSO-related variability), but not natural multi-

decadal variability. We also consider that changes in

damage owing to changing distributions of property

and property values are quantifiable after the fact and

thus do not constitute noise in the system.

3. Results

Figure 3 shows property damage each year for a single

ensemble member of the GFDL twentieth-century cli-

mate simulation, using the damage function in (1) with

Vhalf 5 150 kts. As expected, damage is highly volatile,

ranging from a few million to $275 million (U.S. dollars).

Figure 4 again shows a single randomly chosen ensemble

member of property damage, but for the blended time

series in which the climate state transitions linearly from

its late-twentieth-century condition to its late-twenty-

first-century condition under IPCC emissions scenario

A1b. In this particular case, an upward trend in damage

seems evident, though the trend is not large compared to

the interannual variance. Figure 5 presents a different

metric: damage accumulated over every year from 2000

to the year on the x axis, for a single ensemble member

in each of the constant twentieth-century climate and

the transitioning climate. (The standard deviations up

and down from the ensemble means are also shown for

comparison.) Accumulating the damage has the effect of

smoothing over interannual variations and the differ-

ence in the trends becomes clear after a few decades.

The probability densities of damage, derived using the

1000-member ensemble of accumulated damage at

various times, are shown for all four models in Fig. 6. In

most cases, the probability densities of the warming cl-

imate are distinct from those of the current climate by

100 yr out. Note that in the case of the MIROC model,

the probability densities shift toward lower damage

amounts as the climate warms.

We also calculate the time scale over which the global

warming signal may be considered to have emerged in

time series of damage. Following Bender et al. (2010)

and Crompton et al. (2011), we define the emergence

time scale as that time after which fewer than 5% of

FIG. 3. Property damage (millions in U.S. dollars) each year for

a single ensemble member of the GFDL CM2.0 model with climate

held fixed at its 1981–2000 mean condition.

FIG. 4. As in Fig. 3, but for a climate transitioning linearly from

its state at the end of the twentieth century to its state at the end of

the twenty-first century.

FIG. 5. Accumulated damage from 2000 to the year on the ab-

scissa, from the same two ensemble members presented in Figs. 3

and 4, respectively. The error bars shows one standard deviation up

and down from the ensemble mean.
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the linear regression slopes of damage up to that time,

among the 1000-member ensemble, are negative. In the

case of the GFDL CM2.0-derived damage time series,

this occurs at 40 yr. In the other cases, it does not occur

within the 100-yr time frame of the time series. In these

cases, we artificially extend the time series of each of

the 1000 members of the ensemble by extrapolating the

linear damage trend forward another 100 yr. Figure 7

shows an example of the fraction of regression slopes

that are negative, as a function of the length of time

over which the regression is carried out. It can be shown

that if the interannual variance of property damage

(the ‘‘noise’’) is Gaussian, and the underlying trend is

linear, then the fraction of negative slopes as a function

of the length of the series should be a cumulative dis-

tribution function (cdf) formed from a normal distri-

bution; for this reason we also show a fit of such a cdf

to the data. With the time series extrapolated out to

200 yr, the global warming signal in property damage

emerges from background noise in 113 yr for the CNRM

model and 170 yr for the ECHAM5 model. The negative

signal present in the MIROC model does not emerge

within the 200-yr time frame.

How sensitive are these results to the damage function

used? As a first step in addressing this issue, we repeated

the analysis using Vhalf 5 110 kts in (1), as illustrated

by the dashed curve in Fig. 2. Figure 8 shows the result

for the CNRM simulation; this should be compared to

Fig. 6c. Aside from the obvious increase in the magni-

tude of the damage, the shape of the probability dis-

tributions and their separation with climate change is

hardly distinguishable. The emergence time scale remains

identical at 113 yr. This lack of sensitivity to details of the

damage function pertains to the other models as well.

4. Discussion

For the three global climate models that produce in-

creasing damage in the United States, the time scales for

trends in damage to emerge from background noise

FIG. 6. Probability density of accumulated property damage, across the 1000-member ensemble at various times as

indicated for (a) the GFDL CM2.0 model, (b) the ECHAM5 model, (c) the CNRM model, and (d) the MIROC

model. Black curves indicate constant twentieth-century climate, while the gray curves shows results for the warming

climate.
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range from 40 to 170 yr, somewhat shorter than those

reported in Crompton et al. (2011). There are several

potential reasons for this, including our use of a different

suite of global models and that fact that Crompton et al.

(2011) assumed a proportionality between basin-wide

and landfalling activity and estimated changes in dam-

ages by changes in the distribution of events within the

limited five-bin Saffir–Simpson categorization.

We caution that the question of when a statistically

robust trend can be detected in damage time series should

not be confused with the question of when climate-

induced changes in damage become a significant con-

sideration. Policies and other actions that address U.S.

hurricane damage on the time scale of decades would

surely distinguish the probabilistic outcome represented

by, say, the 25-yr probability density of a warming cli-

mate given in Fig. 6a from that of the steady climate at

the same lead time. Thus, if climate change effects are

anticipated, or detected in basin-wide storm statistics,

sensible policy decisions should depend on the projected

overall shift in the probability of damage rather than

on a high-threshold criterion for trend emergence. This

is particularly important in view of evidence that sug-

gests that an anthropogenic climate change signal has

already emerged in Atlantic hurricane records (Mann

and Emanuel 2006).

A number of caveats apply to the present analysis.

First, we have held constant the distribution and value

of insured property, not accounting for changing de-

mographics or adaptation strategies that might reduce

vulnerability to damage. We do not consider the effects

of rising sea level, which would increase vulnerability to

damage by storm surges. Nor have we taken into account

any changes in the incidence of freshwater flooding stem-

ming from tropical cyclone rainfall. For this study we have

relied on a single projected emissions scenario, SRES A1b,

and the results obviously depend rather sensitively on the

global climate model used to drive the downscaling. At the

same time, the downscaling method itself is, no doubt, an

imperfect measure of the tropical cyclone climatology that

would attend a particular climate state.

5. Summary

We used a synthetic tropical cyclone generator to

produce 1000 artificial time series of U.S. landfalling

Atlantic hurricanes, each of 100-yr length, for the climate

of the late twentieth century and for the late-twenty-first

century, using four climate models. Some of the tropical

cyclones affect properties contained in a portfolio of

insured property, and a damage function was used to

predict how much damage each storm would do to these

properties. This results in two 1000-member ensembles

of 100-yr times series of property damage for each of the

four models: one for the climate of the late twentieth

century and one for the climate of the late-twenty-first

century under IPCC emissions scenario SRES A1b. These

two were blended together, assuming a linear variation of

climate over the twenty-first century, to create time series

of property damage representing a transitioning climate.

From these times series one can make inferences con-

cerning the effect of anthropogenic climate change on

U.S. hurricane wind-related property damage that also

accounts for the high level of background noise inherent

FIG. 7. Percentage of ensembles members with negative linear

regression slopes, as a function of the ending time of the time series,

for the CNRM damage projections (black). The gray curve rep-

resents a fit to the data of a cumulative distribution function based

on a normal distribution. The emergence time scale is defined as

the time after which negative slopes constitute less than 5% of the

total; in this case, this occurs in the year 2113.

FIG. 8. As in Fig. 6c, but using the damage function given by (1)

using Vhalf 5 110 kts.
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in the volatile statistics of intense landfalling tropical cy-

clones.

For three of the four climate models downscaled,

damages increase as a result of projected global warming,

but the fourth model shows a small decrease of damage

with time. For the three climate models that have in-

creasing damage, the climate change signal emerges from

background variability, according to a recently published

criterion, on time scales of 40, 113, and 170 yr, respe-

ctively; the decreasing signal of the fourth model is not

clearly distinguishable from noise even after 200 yr. On

the other hand, the probability distributions of damage in

a warming climate become distinguished from those of

background climate in as little as 25 yr; thus, we argue

that those concerned with future U.S. country-wide tro-

pical cyclone damage on decadal time scales would be

well advised to include climate change as a consideration.
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