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SUMMARY

Recent tests of adding observations to improve individual forecasts have shown a mix of positive, negative,
and neutral results. In this study, the in� uence of added observations on analysis and forecast errors is explored
in idealized systems. The primary system studied is a three-dimensional simulated observing and forecasting
system that includes a quasi-geostrophic forecast model and a three-dimensional variational data-assimilation
system. In this simulated system, adding observations generally improves analyses and often improves 12-hour
forecasts. Even with perfect observational data and a perfect forecast model, however, there is a non-negligible
risk that adding observations will degrade analyses, and a signi� cant risk that assimilated added observations
will degrade forecasts on a time-scale of one or several days. To illustrate several general principles that help
interpret the results, several experiments are performed with low-dimensional data-assimilation systems; the
results demonstrate that the risk of analysis degradation is inherent in statistical data assimilation. Experiments
are also performed with a low-dimensional forecast model, demonstrating that the risk of forecast degradation is
inherent in prediction systems with sensitivity to small errors in initial conditions. Although degradations cannot
be avoided, several circumstances are identi� ed in which adding observations is less likely to degrade analyses
and forecasts and on average improves analyses and forecasts by a larger amount.
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1. INTRODUCTION

One of the primary causes of errors in numerical weather forecasts is errors in the
analyses used as the initial conditions in the forecast model. More observations can
provide more information about the true atmospheric state, and thus can help reduce
such errors. At � rst glance, it seems obvious that more data should improve atmospheric
analyses, as long as the data is reasonably accurate. Given a reasonably good forecast
model, these improved initial conditions should, in turn, produce improved forecasts.

Recently, there has been interest in adding observations in potentially important
locations, called targeting or adapting observations, to improve speci� c signi� cant
forecasts. Targeting observations has been tested for midlatitude-winter forecasts in the
Fronts and Atlantic Storm-Track EXperiment, the North Paci� c Experiment, and the
Winter Storm Reconnaissance Program, and for tropical-cyclone forecasts. For sample
results, see Emanuel and Langland (1998), Langland (1999), Bergot (1999), Gelaro et al.
(1999), Langland et al. (1999a), Szunyogh et al. (1999), Langland et al. (1999b), and
Szunyogh et al. (2000). Although the results include a limited number of cases and
are preliminary, so far it is apparent that while adding observations in targeted regions
has improved some of the forecasts, in other cases it has had little effect or has even
degraded forecasts.

Adding observations could degrade deterministic forecasts in the real world for a
number of reasons. The degradations could be caused by limitations in the observing
system; for example, the observing platforms may have been unable to collect data in
some of the desired locations, the measurements could be unrepresentative in space or in
time, or the data quality could be unexpectedly poor. The degradations could be due to
errors in the forecast model, or they could be an artefact of insuf� cient data for forecast
veri� cation. Adding observations could also degrade some forecasts because of how
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the data-assimilation procedure incorporates the observations into the model state, and
how the forecast model (even without model errors) subsequently uses the assimilated
information.

In this study, we begin to investigate degradations caused by the last possibility,
in the absence of observing-platform constraints and forecast-model errors. To do so,
we explore the effects of adding observations in an idealized, but three-dimensional,
simulated observing and forecasting system, using perfect observing platforms, a perfect
forecast model, and perfect information for forecast veri� cation. We also explore how
data-assimilation systems and nonlinear forecast models use added information in a few
simple, low-dimensional experiments.

Despite their simplicity relative to the real atmosphere, the systems studied exhibit
a wide variety of complex behaviour, more than can be understood in a single study.
In addition, many details of the results are speci� c to the data-assimilation systems,
forecast models, and idealized experimental set-ups tested. Thus, we concentrate on
several general aspects of the results that are likely to be relevant in a variety of numer-
ical weather-forecasting systems. Although the results and discussion raise questions
to be addressed in future work, they are an important step towards understanding how
observations, data-assimilation systems, and numerical forecasts interact.

The results show that adding observations improves many analyses and forecasts.
Even with good observations and a good forecast model, however, added observations
sometimes degrade analyses, and they frequently degrade longer-term forecasts. Analy-
ses can be degraded for two reasons. First, as is well known, the statistics used in current
data-assimilation systems are imperfect. Second, data assimilation is a statistical proce-
dure, with an inherent risk of degradation. Forecasts can be degraded not only because
the analyses used as the initial conditions can be degraded, but also because error growth
limits predictability. The possibility of analysis and forecast degradations follows from
data-assimilation theory and predictability theory. The implications of degradations for
targeting observations, however, are not widely appreciated.

The results also identify circumstances in which adding observations is less likely
to degrade analyses and forecasts and, on average, improves them more. This suggests
that the risk of degradation can be decreased if, when selecting observation locations,
one understands how additional information is likely to be used by the data-assimilation
system and the forecast model in different situations. Several studies have speculated
that poor data assimilation has limited the effectiveness of real-world targeted observa-
tions (see, for example, the references listed above for � eld-experiment results); thus, the
circumstances discussed in this paper focus primarily on the role of data assimilation in
degradations. The role of forecast-error growth in degradations is addressed only brie� y
and in general.

Section 2 describes the set-up of the simulated observing and forecasting system,
including the quasi-geostrophic forecast model and the three-dimensional variational
(3D-Var) data-assimilation system. Section 3 explains how the in� uence of adding
observations is tested at each location in the simulated domain for a number of different
forecast cases. Section 4 presents general results from these experiments for several
sample cases and compiled over many cases. In section 5, we use idealized low-
dimensional statistical data-assimilation systems to begin to investigate how and why
incorporating added data with statistical data-assimilation systems can degrade analyses.
In section 6, we use a three-variable Lorenz model to demonstrate that nonlinear error
growth limits forecast improvement, even when the initial conditions are improved and
the forecast model is perfect. Section 7 revisits the results from section 4, discussing
several general circumstances in the simulated analysis and forecasting system in which
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analysis and forecast improvements are more likely and the mean change is a larger
improvement. Section 8 reviews the major results and conclusions.

2. SIMULATED OBSERVING AND FORECASTING SYSTEM

(a) Quasi-geostrophic model
The quasi-geostrophic (QG) model is a grid-point channel model on a beta plane;

it is zonally periodic and has multiple vertical levels. The model was developed at
the National Center for Atmospheric Research (NCAR) and is the same as that in
Morss et al. (2001). The QG model has simpli� ed geometry and time- and longitude-
independent forcing, but otherwise exhibits baroclinic dynamics similar to those on
synoptic scales in the real atmosphere. Its relative simplicity makes both performing
many experiments feasible and the results easier to interpret. The model is described
only brie� y here; for further details, see Rotunno and Bao (1996) and Morss (1999).

The QG model is forced by relaxing the model variables (interior potential vorticity
and upper- and lower-boundary potential temperature) to a speci� ed zonal-mean state.
The zonal-mean state is a Hoskins–West jet (Hoskins and West 1979) with a zonal-wind
maximum of 60 m s¡1 at the tropopause and a corresponding meridional temperature
gradient; the relaxation time-scale is 20 days. The strati� cation is constant, and the
tropopause height is � xed but with varying temperature. The model dissipation consists
of fourth-order horizontal diffusion and, at the lower boundary, Ekman pumping.

The channel circumference is 16 000 km, the channel width is 8000 km, and the
depth of the domain is 9 km. The Rossby radius of deformation is approximately
1000 km. The results shown here have 250 km horizontal grid spacing and � ve vertical
levels. At this grid spacing, small errors double in magnitude in approximately 2–3.5
days. A sample state of the QG model is depicted in Fig. 1.

(b) Data-assimilation system
The data-assimilation system is a 3D-Var scheme based on the Spectral Statistical-

Interpolation analysis system operational at the National Centers for Environmental
Prediction in the USA (Parrish and Derber 1992). At each assimilation time, the 3D-
Var scheme combines a weighted short-term model forecast (also called a background
� eld) with weighted observations to create an analysis � eld, which is then used as the
initial conditions for forecasts. The difference between the analysis and the background
is called the analysis increment. The 3D-Var scheme is the same as that used in Morss
et al. (2001) and is only summarized here; for further details, see also Morss (1999).

All observations in these experiments simulate rawinsondes that measure winds and
potential temperature at model grid points and model levels. The weighting of the obser-
vations in the analysis is controlled by the observation-error statistics given to the 3D-
Var scheme. The observation errors are assumed to be uncorrelated between different
rawinsondes and between wind and temperature observations (Dey and Morone 1985),
and the observation-error covariance matrix was developed from the values given in
Parrish and Derber (1992) and from the simple function in Eq. (3.19) in Bergman (1979).

The background-error statistics given to the 3D-Var scheme help determine how the
data assimilation weights different parts of the background � eld relative to the observa-
tions. They also determine how the data assimilation spreads information from observed
to unobserved locations. In order for the inversion of the data-assimilation equation
to be computationally feasible, the structure of the complete time- and space-varying
background-error covariances must be simpli� ed. Following Parrish and Derber (1992),
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(a)

(b)

Figure 1. Synoptic situation (the true state of the quasi-geostrophic model) at day 0, the time at which added
observations are tested in the examples shown in Figs. 3–7 and Tables 1–2. Stream function, in non-dimensional
units, is plotted at the upper boundary (a) and at the lower boundary (b). The x-axis is longitude (periodic) and

the y-axis is latitude. Each grid point is marked with a tick, spaced by 250 km.

we assume that the background-error covariance matrix is � xed in time, is diagonal
in spectral space, and has separable vertical and horizontal structures. In addition, only
simple vertical background-errorcovariances (in terms of interior potential vorticity and
boundary potential temperature) are speci� ed.

With these assumptions, the background-error statistics, and thus the analysis incre-
ments for individual observations, are nearly isotropic and have no knowledge of spe-
ci� c atmospheric situations. As described in Morss et al. (2001), the background-error
covariance matrix was generated by accumulating 12-hour forecast-error statistics over
a large number of runs with different distributions of 32 � xed simulated rawinsondes.
Sample analysis increments for a single observation are depicted in Morss et al. (2001);
the effective background-error correlation length for stream function is of the order of
1000 km.

Although more complex data-assimilation schemes are currently being developed
and implemented, we chose a 3D-Var scheme for several reasons. First, given the tech-
nology and information available when the experiments were performed, assumptions
similar to ours were necessary to develop a data assimilation that is reliable, yet com-
putationally fast enough to allow many experiments. Second, the 3D-Var method used
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in this study is similar to the schemes currently operational at most numerical weather-
prediction centres, and is likely to remain so in the near future. In addition, the 3D-Var
scheme demonstrates how adding observations can, in general, in� uence analyses and
forecasts in a three-dimensional model with an imperfect statistical data-assimilation
system.

(c) Set-up of identical twin experiments
The identical twin experiments (also called observing-system simulation experi-

ments, or OSSEs, with a perfect forecast model) are set up as in Morss et al. (2001).
First, an arbitrary state of the QG model is selected to be the initial ‘true’ state. To
create an initial ‘model’ state, random uncorrelated noise is added to the true state,
independently at each grid point. Then, we run an analysis and forecast cycle by in-
tegrating both the true and model states forward in time, interrupting the model run
every 12 hours to assimilate simulated rawinsonde observations of the true state into the
model state. Before the start of the experiments, the analysis and forecast cycle is run for
a 60-day spin-up period, so that the model state is largely both independent of its initial
perturbation and equilibrated to the observational network. All analyses and forecasts
are evaluated with respect to the (known) true state.

The simulated rawinsonde observations are generated by sampling the winds and po-
tential temperature of the true state. During the spin-up period, random errors consistent
with the observation-error statistics in the 3D-Var scheme are added to the observations
(as described in Houtekamer 1993). To prevent the results at any given location and time
from being biased by an observation with an unusually large error, the Gaussian distri-
bution used to generate the observation errors is truncated at one standard deviation.

Along with the control model state, a 96-member ensemble of equally likely initial
conditions is generated. To produce each ensemble member, we begin with a different
perturbation of the true state, then run the analysis and forecast cycle with the same
observations as were used to produce the control model state, but resampling the
distribution of random observation errors. This ensemble is similar to the perturbed
observation (also called multiple replication) ensemble in Morss et al. (2001) (see also
Houtekamer and Derome 1995; Lorenz and Emanuel 1998; Hamill et al. 2000), except
we perturb the true (error-free) observations rather than the control observations (which
already contain errors).

The same QG forecast equations, at the same resolution, are used to integrate both
the true and the model states forward in time. This simulates perfect knowledge of the
atmospheric dynamic equations. It also assumes that all processes in the true atmosphere
are resolved in the model atmosphere. We assume a perfect forecast model so that
forecast errors can result only from errors in the initial conditions; this both removes
a possible source of forecast degradations and simpli� es interpreting the results. In a
more realistic system, with an imperfect forecast model, the results are almost certain to
be less optimistic.

3. SET-UP OF ADDED-OBSERVATION EXPERIMENTS IN THE SIMULATED SYSTEM

(a) Generation of cases
The in� uence of added observations is tested in a number of different cases. A ‘case’

is de� ned by a unique set of a true state of the QG model (which we call the ‘synoptic
situation’) and a model state (an estimate of the true state, also called the analysis or
the initial conditions for a forecast). The difference between the model state and the
true state is called the ‘initial-condition errors’. Seventeen synoptic situations are tested,
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each separated by 12 hours during an 8-day run. Because a synoptic situation can be
paired with many different initial-condition errors, multiple cases can be generated for
each synoptic situation.

The initial-condition errors for the cases are generated in two ways. First, we
produce six sequences of model states by running the OSSE six times over the same
60-day spin-up period and 8-day sequence of synoptic situations, but using a different
‘standard observation network’ for each OSSE run. For the results shown, each standard
observation network is a different set of 16 � xed locations with simulated rawinsondes;
the locations are selected randomly as described in Morss et al. (2001). Second,
for one of the standard observation networks, we randomly select nine sequences of
equally likely model states from the 96 remaining members of the ensemble described
in section 2(c). For one standard observation network, then, we include cases for
ten realizations of the initial-condition errors; for the other � ve standard observation
networks, we include cases for only one realization of the initial-condition errors. In
all, adding observations is tested in 255 cases (15 initial-condition errors £ 17 synoptic
situations), each with the same density of standard observations.

We generated cases in this manner to evaluate how the in� uence of added observa-
tions depends on the synoptic situation, the past observation locations, and the speci� c
realization of the initial-condition errors. A standard network of 16 � xed observations
was chosen because, at this observation density, adding only a few observations at every
data-assimilation interval can reduce the mean analysis and forecast error by a large
amount (Morss et al. 2001). We also tested adding observations to � xed observation
networks of other densities; the results are qualitatively similar, but are in general more
pessimistic for higher-density networks and more optimistic for lower-density networks.

The 8-day sequence of synoptic situations, the six standard observation networks,
and the standard observation network used to generate the equally likely initial-
condition errors were chosen arbitrarily. Since the experiments performed (described in
section 3(b)) are computationally very expensive, the primary factor limiting the number
and type of cases included was computational resources.

(b) Testing the in� uence of added observations
In each case, we � rst calculate the global-average error in the standard analysis (with

only observations from the standard network assimilated) and in the forecasts produced
from the standard analysis. This is the control run. Then, we systematically test the effect
of adding observations at each location in the domain. To do so, we assimilate each test
set of added observations along with the standard observations, then run forecasts from
each test analysis. Global-average errors are calculated for the resulting analyses and
forecasts, evaluated with respect to the true state. For each test set of added observations,
the change in error for the analysis and for each forecast is de� ned as:

1 error D
error with added observations ¡ error without added observations

error without added observations
: (1)

All results in sections 4 and 7 use Eq. (1), the percent change in global-average error in
a single realization, to measure the in� uence of each set of added observations¤.

The results shown are for global-average energy errors, summed over all levels
as well as over the horizontal domain. Qualitatively, results are similar for global
¤ This error norm, which compares deterministic forecasts made with added observations with those made without
added observations, is patterned after other recent studies of the in� uence of added observations (see, for example,
the references provided in the introduction).
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Figure 2. Observation pattern for cluster 13, the primary cluster used to test added observations. Dots represent
grid points (spaced by 250 km), a C is plotted at the central location for the test observations, and £’s are plotted

at observed locations. The x-axis is longitude and the y-axis is latitude.

root-mean-square average potential-vorticity and stream-function errors, and for errors
averaged over the horizontal domain but at individual levels. A domain-average error
norm is used instead of a local error norm because it would be dif� cult to identify an
appropriate local veri� cation region for each of the analyses and forecasts tested. As
discussed in Morss et al. (2001) and Morss (1999), in this simulated system, global-
average analysis and forecast errors tend to be dominated by large errors in a few
regions. Thus, a global-average error norm measures primarily the in� uence of added
observations in the few regions with large errors.

With the de� nition in Eq. (1), negative values of error change indicate that the
added test observations decrease the error, that is, improve the analysis or forecast.
Positive values indicate that the added observations increase the error, that is, degrade
the analysis or forecast. The effect of adding observations is tested at each location in the
domain, except at the channel walls and at the locations where observations are already
taken as part of the standard network; at these locations, the analysis- and forecast-error
changes are set to zero.

In most of the results shown, the test observations are taken with a cluster of several
simulated rawinsondes centred around each test location. We tested observation clusters
to provide the 3D-Var data assimilation with more information about the structure of
the initial-condition errors. The primary cluster used is 13 observations at alternating
grid points in a 1000 km £ 1000 km area, depicted in Fig. 2. Observations that extend
outside the domain are removed; observations that overlap with standard observation
locations are not removed. This cluster was selected because it was, on average, one of
the more bene� cial clusters in previous tests of adaptive observations with this simulated
system (Morss 1999). Using it thus gives the data-assimilation system an advantage
in improving analyses and forecasts. Single simulated rawinsondes and different-sized
observation clusters were also tested for a subset of the cases; results are discussed
brie� y in section 4(a) and are presented in more detail in Morss (1999).

The results shown are for perfect (error free) test observations. We chose to present
results for perfect observations so that degradations could not be attributed to errors
in the observations. Note, however, that even with perfect observations, the data-
assimilation system still assumes some observational error. Therefore, the analysis does
not match the observations exactly. For a subset of the cases, the experiments were also
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performed with test observations with errors; the results are similar to those shown and
are discussed brie� y in section 4(b).

Because it is computationally very expensive to assimilate test observations for each
location in the domain and to generate forecasts for each test analysis, only a limited
number of cases were tested. The cases are by no means a random sample; they include
only 17 synoptic situations separated by only 12 hours, and only a few sets of initial-
condition errors. Therefore, the results are not strictly representative of all possible
cases. Nevertheless, given the large number of added sets of observations tested, the
results suggest some ways that added observations can in� uence analysis and forecast
errors.

4. GENERAL INFLUENCE OF ADDED OBSERVATIONS IN THE SIMULATED SYSTEM

In this section, we show results from the added-observation experiments in several
sample cases, discussing the general similarities and differences. Then, we compile the
results over all cases to show the overall likelihood of different-sized improvements
and degradations in analyses and forecasts. Finally, we brie� y discuss the change in
error that is expected, averaged over the results for several equally likely realizations
of initial-condition errors. Only general features of the results are discussed; several
aspects are explored in further detail in section 7.

(a) Sample results in individual cases
Results are shown for three sample cases, with the same synoptic situation but

different initial-condition errors. Figure 1 depicts the true synoptic situation at the
observation time. For the � rst sample case, Fig. 3 depicts the spread in the 97-member
ensemble of 12-hour forecasts valid at the observation time (an estimate of the initial-
condition errors), and Fig. 4 depicts the analysis- and forecast-error changes as a
function of the central location for the test added observations. Recall that all of the
results shown are for changes in error averaged over the horizontal domain and at all
levels, and that negative changes represent error reductions, i.e. improvements, while
positive changes represent error increases, i.e. degradations. Figure 5 shows the error
changes for a case with the same standard observation network (and thus the same
ensemble spread) as in Fig. 3, but with a different realization of the initial-condition
errors. Figures 6 and 7 show the standard observation network, the ensemble spread,
and the error changes for the third sample case. Table 1 summarizes results for the
15 cases with this synoptic situation.

Figures 3–7 illustrate, in general, how assimilated added observations can in� uence
analysis and forecast errors. Three examples are presented to emphasize the detail and
complexity of the results. The examples show that small changes in the observation
location can cause the results to vary signi� cantly; in some situations, moving the
added-observation cluster only a few hundred kilometres can change a much improved
forecast into a much degraded forecast. The examples also show that changing the model
initial conditions can cause the results to vary, even for the same synoptic situation.
Comparing Fig. 4 with Fig. 7, we see that the in� uence of added observations, including
the likelihoods, magnitudes, and speci� c patterns of improvements and degradations,
depends on the past observation locations. Comparing Fig. 4 with Fig. 5, we see that the
in� uence of adding observations also depends on the speci� c realization of the initial-
condition errors. These aspects of the results, and their overall complexity, indicate why
de� nitively diagnosing many of the degradations is dif� cult. They also show why one
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Figure 3. Ensemble spread in the 12-hour forecast valid at day 0 for standard observation network 1, at the
uppermost interior level (a) and the lowest interior level (b), with an energy norm. The locations of the 16 � xed
observations in the standard network are marked with an £. The x-axis is longitude (periodic) and the y-axis is
latitude. The ensemble has 97 members and is generated as described in section 2(c). The contour interval is 0.05
in (a) and 0.02 in (b), and the maximum values are given to the right. The tick mark labels on the axes represent

grid points; the grid-point spacing is 250 km.

needs to test many sets of added observations before drawing � rm conclusions about
their effects.

Despite the differences, the cases have several features in common. First, all cases
have mixed positive and negative results, with complex patterns of improvements and
degradations and complex relationships between analysis-error changes and forecast-
error changes. Second, most of the cases have more analysis improvements than degra-
dations. As we see in Figs. 4, 5, and 7 and Table 1, the analysis improvements are
also generally larger than the analysis degradations. Moving from analyses to 12-hour
forecasts to longer term forecasts, however, the results tend to shift towards more degra-
dations, and towards improvements and degradations being larger and of approximately
equal magnitude. Finally, note that analyses and short-term forecasts are more likely to
be improved when observations are added where the ensemble spread is large.

Table 2 summarizes results for the same case as in Fig. 4, but using different
observation clusters for the added observations (see Morss 1999 for further detail). The
results do depend to some extent on how the added observations are taken. For example,
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(a)

(b)

(c)

Figure 4. Analysis- and forecast-error change as a function of the central location for a test cluster of added
observations in a sample case (day 0, standard observation network 1, initial realization 1), generated as described
in section 3(b). Results are shown for the change in the global-average error in the analysis (a), 12-hour
forecast (b), and 48-hour forecast (c); the x-axis is longitude (periodic) and the y-axis is latitude. Negative contour
lines (improvements) are dashed; positive contour lines (degradations) are solid. The contour interval is 0.01 in (a)
and (b) and 0.03 in (c), and the maximum and minimum values are summarized in Table 1. The synoptic situation
is depicted in Fig. 1; the ensemble spread at the observation time and the standard observation network are depicted

in Fig. 3.
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(a)

(b)

(c)

Figure 5. As in Fig. 4, for a different realization of the model state (initial realization 4).

the speci� c results at an observation location sometimes depend on the observation
cluster used. In addition, clusters with more observations tend to produce not only larger
improvements, but also larger degradations. Despite the differences, the general features
discussed above are valid for all observation clusters tested.

Figures 4, 5, and 7 show how sensitive global-average analysis and forecast errors
are to assimilated added observations. Adjoint models can be used to determine the
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Figure 6. As in Fig. 3, for standard observation network 4.

sensitivity of forecast errors to small changes in the initial conditions (see, for exam-
ple, Errico and Vukicevic 1992); the results in this study differ from adjoint-calculated
sensitivities in several respects. First, in this study the full forecast model is used, while
adjoints must approximate nonlinear parts of the forecast model. Unlike adjoint calcu-
lations, the results in this study also explicitly test the effects of the data-assimilation
system. Because this includes extensive vertical and horizontal interpolation and ex-
trapolation of the data, the results in this study tend not to have horizontal and vertical
structure similar to that often seen in adjoint sensitivities, even when single observations
are tested at single levels. Thus, although the results shown here and adjoint sensitivities
are complementary and in some sense related, they are not directly comparable.

(b) Results compiled over all cases
Figure 8 shows, for all observation locations tested in the 255 cases, how frequently

a set of observations changes the analysis and forecast errors by different amounts. Since
the effect of adding observations is tested at each location in the domain in each case, a
large fraction of the test observations are at locations that would probably not be selected
by any targeting strategy, such as locations far from any current or future meteorological
features. The results in Fig. 8, therefore, cannot be directly applied to any speci� c
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(a)

(b)

(c)

Figure 7. As in Fig. 4, for the standard observation network and ensemble spread depicted in Fig. 6.

targeted-observing strategy, but rather indicate the general likelihood of different sized
improvements and degradations from randomly placed added observations.

Compiling the results over all cases con� rms that several of the similarities among
cases that were discussed in section 4(a) are general features. First, adding observations
produces a mix of improvements and degradations. Adding observations also improves
many more analyses than it degrades, and analysis improvements tend to be larger than
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TABLE 1. MAXIMUM ERROR CHANGES, ADDED OBSERVATIONS AT DAY 0

Analysis 12 h forecast 48 h forecast
Standard Initial
network realization Max. impr. Max. degr. Max. impr. Max. degr. Max. impr. Max. degr.

1 1 ¡0:08 C0.02 ¡0:11 C0.06 ¡0:18 C0.24
1 2 ¡0:09 C0.04 ¡0:08 C0.08 ¡0:14 C0.16
1 3 ¡0:08 C0.02 ¡0:11 C0.06 ¡0:14 C0.12
1 4 ¡0:06 C0.03 ¡0:13 C0.06 ¡0:13 C0.16
1 5 ¡0:08 C0.03 ¡0:09 C0.06 ¡0:15 C0.24
1 6 ¡0:10 C0.03 ¡0:16 C0.05 ¡0:17 C0.18
1 7 ¡0:08 C0.03 ¡0:10 C0.08 ¡0:12 C0.17
1 8 ¡0:08 C0.01 ¡0:10 C0.05 ¡0:25 C0.14
1 9 ¡0:06 C0.03 ¡0:08 C0.08 ¡0:16 C0.10
1 10 ¡0:09 C0.01 ¡0:13 C0.04 ¡0:13 C0.23
2 ¡0:11 C0.03 ¡0:16 C0.06 ¡0:15 C0.13
3 ¡0:07 C0.05 ¡0:07 C0.07 ¡0:11 C0.19
4 ¡0:10 C0.02 ¡0:13 C0.05 ¡0:21 C0.19
5 ¡0:17 C0.03 ¡0:18 C0.04 ¡0:14 C0.19
6 ¡0:04 C0.07 ¡0:09 C0.11 ¡0:12 C0.16

Maximum improvements (reductions in global-average error) and degradations (increases in global-average
error) produced by adding a cluster of observations to a network of 16 � xed observations at any location in the
domain, in the synoptic situation shown in Fig. 1. Results are shown for changes in analysis errors, 12-hour
forecast errors, and 48-hour forecast errors, for each of the 15 initial-condition errors tested. The change in
error is averaged over all levels and is de� ned in Eq. (1). ‘Standard network’ refers to the network of � xed
observations used to spin up the initial conditions, and ‘initial realization ’ refers to the speci� c realization of
the initial-condition errors, i.e. of the model state, as described in section 3.

TABLE 2. MAXIMUM ERROR CHANGES, DIFFERENT ADDED-OBSERVATION CLUSTERS , AT DAY 0

Analysis 12 h forecast 48 h forecast
Cluster
pattern Max. impr. Max. degr. Max. impr. Max. degr. Max. impr. Max. degr.

1 ¡0:04 C0.03 ¡0:08 C0.06 ¡0:12 C0.08
3 ¡0:05 C0.02 ¡0:08 C0.05 ¡0:14 C0.13

13 ¡0:08 C0.02 ¡0:11 C0.06 ¡0:18 C0.24
81 ¡0:09 C0.02 ¡0:14 C0.09 ¡0:20 C0.36

As in Table 1, for standard observation network 1 and initial realization 1, but for observations added with
different sized and shaped clusters. Cluster 13 is the cluster used for all other results shown, including those
in Table 1; it is depicted in Fig. 2. Cluster 1 is a single rawinsonde at the test observation location, cluster 3 is
a triangle of 3 rawinsondes around the test observation location, and cluster 81 is a rawinsonde at each of the
81 locations in a 9 grid point £ 9 grid point (2000 km £ 2000 km) area around the test observation location.

analysis degradations. Second, when forecasts are run from the analyses with added
observations, both the magnitude of the error changes (positive or negative) and the
likelihood of degradation tend to increase. Although degradations are more common
in 12-hour forecasts than in analyses, few are large. By the 48-hour forecast, not only
degradations, but also large degradations, are nearly as likely to occur as improvements
of similar magnitude. In fact, as the forecast time-scale approaches the predictability
time-scale, the distribution of forecast improvements and degradations must become
symmetric; this is discussed further in section 6. Thus, although adding observations
usually improves analyses and short-term forecasts, it often does not improve longer-
term forecasts—even with a perfect forecast model.

As discussed in section 3(b), the results shown here are for error-free observations.
For a subset of the cases, the experiments were also performed for test observations with
errors¤. Histograms similar to Fig. 8 for observations with errors show no signi� cant
¤ Recall that no observations have errors greater than one standard deviation.



INFLUENCE OF ADDED OBSERVATIONS ON ANALYSES AND FORECASTS 299

–0.3 –0.2 –0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

analysis error change

fr
ac

tio
n 

of
 lo

ca
tio

ns

<.001

.008

.75

0

<.001

.25

–0.3 –0.2 –0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

12h forecast error change

fr
ac

tio
n 

of
 lo

ca
tio

ns

.003

.025

.66

<.001

<.001

.34

–0.3 –0.2 –0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

24h forecast error change

fr
ac

tio
n 

of
 lo

ca
tio

ns

.006

.046

.60

<.001

.008

.40

–0.3 –0.2 –0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

48h forecast error change

fr
ac

tio
n 

of
 lo

ca
tio

ns

.014

.076

.55

.005

.032

.45

(a) (b)

(c) (d)

Figure 8. Histogram of the likelihood that a cluster of observations, added anywhere in the domain to a network
of 16 � xed observations, changes the global-average error in the analysis (a), the 12-hour forecast (b), the 24-hour
forecast (c) or the 48-hour forecast (d), by different fractions. Recall that negative changes represent improvements
and positive changes represent degradations. The statistics are accumulated over 255 cases (15 initial-condition
errors for each of 17 synoptic situations), as described in section 3. Observations are tested at 1968 locations in
each case, for a total of 255 £ 1968 ¼ 5 £ 105 test sets of observations. The numbers near the top of the histogram
are the fraction of locations at which added observations change the error by the amount in the indicated band. In
(a), for example, at 75% of the locations, added observations reduced the analysis error by any amount; at 0.8%
of the locations, added observations reduced the analysis error by more than 10%. A 0 means that there are no
locations in that section of the histogram; <0.001 means that there are a few locations, but less than 0.1% of the

number tested.

differences from those for observations without errors (compiled over the same subset
of cases). Compared with observations without errors, observations with errors cause ap-
proximately 4% more analysis degradations, and approximately the same percentage of
degradations in forecasts of one day or longer. Thus, including errors in the observations
does not signi� cantly change either the size distribution of error changes in analyses or
forecasts or the likelihood of analysis or forecast degradations. This suggests that, at
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least for the observation and background errors simulated here, observation errors are
only a minor factor in analysis and forecast changes. As the average background error
decreases relative to the average observation error, perhaps due to a denser standard ob-
servation network or a better data-assimilation system, observation errors are expected
to play a larger role. The role of observation errors in degradations is discussed further
in section 5.

(c) Expected results of adding observations
The results shown so far depict how adding observations affects individual real-

izations of analyses and forecasts. In practice, however, one can only predict expected
quantities. Therefore, in this section we brie� y discuss results similar to those in sec-
tions 4(a) and 4(b), but for the expected change in error from adding observations in
a case. To estimate the expected change in error, at each test location we average the
results from several equally likely realizations of the initial-condition errors for the same
synoptic situation and standard observation network¤. This represents the results one
would expect if added observations were assimilated into several ensemble members,
forecasts were produced for each ensemble member with and without the added data,
and the comparisons were averaged over the ensemble.

Figure 9 shows the expected effect of adding observations for the same synoptic
situation, standard observation network, and ensemble spread as the results in Figs. 4
and 5. Note that the expected results tend to have smaller magnitudes than the results
for individual realizations. This indicates that several of the features in Figs. 4 and 5 are
due to the speci� c realization of the initial-condition errors. In addition, as the forecast
length increases, so does the difference in magnitude between the expected results and
those in individual realizations. As discussed in sections 4(b) and 6, this indicates that
error growth tends to weaken the relationship between changes in the initial conditions
and changes in longer-term forecasts.

Despite the differences among results for different realizations, several features are
evident in the expected results. First, the expected results identify a region near the
centre of the domain where adding observations, on average, signi� cantly degrades
the 12-hour forecast (and where most realizations have 12-hour forecast degradations).
Although ten realizations may be insuf� cient to allow one to draw � rm conclusions,
the mean degradation is probably caused by a mismatch between the true and assumed
background-error statistics in this region, combined with the error growth characteristics
of the synoptic situation. Second, as in the results for individual cases, analysis and 12-
hour forecast improvements are more likely and tend to be larger when observations are
added where the ensemble spread is larger.

We also constructed histograms similar to Fig. 8 for the expected results (not shown).
Compared with histograms for the results from individual realizations (compiled over
the same subset of cases), the expected results contain approximately 12% fewer anal-
ysis and 12-hour forecast degradations. For 48-hour forecasts, the expected results con-
tain only several percent fewer degradations than the results for individual realizations,
but are clearly more skewed towards large improvements. Thus, measuring the effect of
adding observations averaged over several realizations of an analysis and forecast de-
creases the likelihood of degradation. It also tends to decrease the magnitude of degrada-
tions more than it decreases the magnitude of improvements. This suggests that adding
¤ The results shown are for the error norm de� ned in Eq. (1), the percent change in error. The percent change is
de� ned using the error without added observations, which is different for each realization. The expected change
in error was also calculated by averaging over the absolute changes in error for the realizations; the results are
similar to those shown.
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(a)

(b)

(c)

Figure 9. As in Figs. 4 and 5, but for the expected change in error with added observations. The expected change
in error is calculated by averaging over the results for the ten equally likely realizations of the initial-condition
errors, in other words, by averaging the results in Figs. 4 and 5 with the results from the eight other realizations
of initial-condition errors tested for the synoptic situation and standard observation network depicted in Figs. 1
and 3. Figures 4 and 5 suggest the variability about the expected results. The contour intervals are the same as in

Fig. 4.
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or targeting observations may bene� t probabilistic forecasts more than deterministic
forecasts.

5. ANALYSIS DEGRADATIONS IN IDEALIZED LOW-DIMENSIONAL DATA-ASSIMILATION
SYSTEMS

The results shown so far use a data-assimilation system with error statistics that are
far from accurate. In this section, we begin to evaluate how adding observations can
affect analyses in other data-assimilation systems, including those with much better
error statistics. To do so, we construct statistical data-assimilation systems that are
similar to the 3D-Var or a Kalman � lter but much simpler, with only one or two degrees
of freedom. We then use the low-dimensional data-assimilation systems to explore how,
in general, data-assimilation systems incorporate information in different circumstances.
Testing simple, time-independent data-assimilation systems allows us to avoid many
of the complex interactions in the 3D-Var scheme, and it greatly facilitates simulating
perfect knowledge of the error statistics.

Each low-dimensional data-assimilation experiment has at least two input variables,
one representing a background estimate and one representing an added observation.
The input variables are random variables, not designed to represent a physical quantity.
To test each data assimilation over many possible situations, � rst, 106 realizations are
generated for each input variable. Second, for each of the 106 sets of input variables, an
analysis is produced. Then, for each set of realizations, the estimates with and without
the added observation(s) are evaluated and compared.

The assimilation algorithms tested here, like 3D-Var or a Kalman � lter, assume that
the errors in the input variables are random with a normal (Gaussian) distribution. Thus,
the realizations for a variable x are generated by randomly sampling from a Gaussian
distribution with mean x t and variance ¾ 2; this is written x D xt C ², ² » N.0; ¾ 2/.
Variables that are correlated are generated jointly using the covariance matrix.

Although one could easily experiment with many idealized low-dimensional data-
assimilation algorithms, results are discussed for only a few examples. All of the results
discussed simulate perfect knowledge of the observation-error statistics, in other words
generate the realizations of the observation input variables using the error distributions
assumed by the data-assimilation algorithm. The � rst two sections also simulate perfect
knowledge of the background-error statistics; in the � rst, we estimate one analysis
variable at an observed location, and in the second, we extrapolate information from an
observed to a unobserved location. The third section explores some effects of imperfect
knowledge of the background-error statistics.

The low-dimensional data-assimilation examples identify three factors that can
cause analysis degradations: observation errors, extrapolation of information, and im-
perfect error statistics. The � rst two factors can cause degradations even with perfect
knowledge of the error statistics; thus, the risk of degradation in individual realizations
of analyses is inherent in statistical data assimilation. The examples also show that cur-
rent statistical data-assimilation systems are designed to minimize the mean error in the
estimate and the standard deviation of the error in the estimate, but not the likelihood
of degradation. In addition, they identify several general circumstances in which adding
observations is more likely to improve an estimate and on average improves an estimate
more.

Although the results in this section are not directly comparable to those from high-
dimensional data-assimilation systems, they are shown for several reasons. First, they
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con� rm that the degradations shown so far are not merely a feature of the speci� c data-
assimilation system used. Second, they demonstrate several general principles of how
any realistic statistical data-assimilation system is likely to use information in different
circumstances¤. These principles are used in section 7 to help us interpret results from
the 3D-Var model.

(a) One analysis variable, one observation: Perfect error statistics
Suppose that at a single location and time, we have two unbiased estimates of

a variable that has a true value x t. One estimate, the random variable xb D x t C ²b,
²b » N.0; ¾ 2

b /, represents the background value, the estimate of xt in the absence
of further information. xb could be, for example, a climatological value, a forecast
from a previous time, or an analysis with many observations. The second estimate,
xo D xt C ²o, ²o » N.0; ¾ 2

o /, represents a new observation of x t.
If we know the statistics of xb and xo correctly, then the minimum variance and

maximum likelihood estimate of x t is:

xa D
¾ 2

b xo C ¾ 2
o xb

¾ 2
b C ¾ 2

o
D xb C

¾ 2
b

¾ 2
b C ¾ 2

o

.xo ¡ xb/: (2)

xa represents the analysis, our ‘best’ estimate of xt given a realization of xb and xo.
xa ¡ xb (the last term on the right-hand side of Eq. (2)) is the analysis increment. For
a derivation of Eq. (2) or the related multivariate algorithm used in 3D-Var, a Kalman
� lter, or other statistical data-assimilation systems, see, for example, Lorenc (1986) or
Daley (1991).

For each realization, de� ne the error in xb, i.e. in the estimate without the added
observation xo, as

eb D jxb ¡ xtj (3)

and the error in xa, i.e. in the estimate with the added observation, as

ea D jxa ¡ x tj: (4)

Then, de� ne the change in error produced by assimilating the added observation as

1e D ea ¡ eb: (5)

Equation (5) is similar to Eq. (1), but for absolute change in error rather than percent
change. Again, 1e < 0 when assimilating the added observation improves the analysis,
and 1e > 0 when assimilating it degrades the analysis.

Figure 10 shows the distribution of 1e for 106 realizations of this data-assimilation
example, when ¾b D ¾o D 1. As expected, assimilating the observation on average
improves the estimate: the mean of ea is 0:56, while the mean of eb is 0:80. Assimilating
the observation also decreases the uncertainty in the estimate:

¾ 2
a D

³
1

¾ 2
b

C
1

¾ 2
o

¡́1

D 0:5 (6)

¤ One could construct a data-assimilation example with highly non-Gaussian error statistics that might behave
differently; such systems are not considered here.
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Figure 10. Histogram of the likelihood that assimilating one observation into an estimate of the observed variable
changes the analysis error by different amounts. The numbers near the top are the fraction in the indicated band.

See text for further details.

is less than ¾ 2
b D 1. However, assimilating the observation does not always improve

the estimate: adding an observation degrades the analysis, that is, ea is larger than
eb, approximately 35% of the time. Recall that the error statistics used in Eq. (2)
to calculate xa match the actual statistics of xb and xo, so none of the degradations
are caused by incorrect speci� cation of the error statistics in the data-assimilation
algorithm. Rather, the degradations occur because the assimilation is statistical—having
perfect information about the statistics of the errors is not the same as having perfect
information to correct the errors.

Degradations occur when ea > eb, i.e. when

jxa ¡ xtj > jxb ¡ x tj: (7)

To visualize how the degradations occur, we combine Eq. (7) with Eq. (2), then solve
for xo. For xb > x t, assimilating the observation degrades the estimate in two situations:

xo > xb (8)

xo ¡ xt < ¡f1 C 2.¾ 2
o =¾ 2

b /g.xb ¡ x t/: (9)

The two situations are depicted in Fig. 11; the equivalent situations for xb < x t can be
visualized by � ipping Fig. 11 left to right. Note that in this example, which estimates one
observed variable, incorporating an error-free observation cannot degrade the estimate.

Figure 12 depicts how the likelihood of degradation and the mean change in error
in this data-assimilation example vary with the ratio of ¾b to ¾o. The results show that
(with perfect knowledge of the error statistics) improvements are more likely and the
mean change is a larger improvement when observations are added where the ratio
between the background error and the observation error is likely to be large. As ¾b=¾o
decreases, the situations in Eqs. (8) and (9) become more likely, increasing the likelihood
of degradation; to visualize how this occurs, picture the distribution of xb narrowing
compared with that of xo in Fig. 11. When ¾b=¾o is small, observations are nearly as
likely to degrade analyses as to improve them, and the mean change is only a small
improvement. This makes sense intuitively—as the background error decreases relative
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Figure 11. Illustration of how adding an observation can degrade an estimate of one variable for some
realizations of xb and xo, even when the data-assimilation system has perfect knowledge of the error statistics.
(a) Illustrates a degradation in the situation given by Eq. (8), and (b) illustrates a degradation in the situation given

by Eq. (9). The examples shown are for ¾b D ¾o . See text for further details.

to the observation error, the noise in the observation increases relative to the error the
observation is trying to correct.

Figure 12 shows that, when observing in regions with small background errors,
we will require good observations to have a good chance of improving the analysis.
To increase the chance of improving the analysis, the observation error could be
decreased, by reducing either the instrument error or the representativeness error. Or, if
the observation error is � xed, several measurements could be taken. To simulate taking
several measurements, we have rerun the same set of experiments, but assimilating more
than one independent observation xo of the same type (same variable, same ¾o, same
location). As the number of observations increases, the uncertainty in the estimate, the
mean error in the estimate, and the likelihood of degradation all decrease. Even when
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Figure 12. Fraction of changes that are degradations (a) and mean change in analysis error (mean of 1e, (b)) as
a function of the ratio between ¾b (the standard deviation of the background error) and ¾o (the standard deviation
of the observation error) in the one-variable data-assimilation example given by Eq. (2), with perfect knowledge
of the error statistics. Each point plotted is an average over 106 realizations. (b) Is normalized to ¾o D 1. Note that

the x-axis is logarithmic.

many independentobservations are assimilated, however, degradations are still possible;
with ¾o D ¾b and 100 observations, for example, approximately 6% of the changes are
degradations.

The results from the one-variable data assimilation have several implications for any
statistical data-assimilation system. First, even with perfect knowledge of all character-
istics of the error statistics, adding an observation can degrade an individual realization
of an analysis. Second, observations are more likely to improve analyses, and they on
average improve analyses more, when the observation error is likely to be small com-
pared with the background error. Again, this is true even if the data-assimilation system
uses the correct error statistics. Finally, degradations in single realizations are dif� cult
to avoid completely, even with many observations.

(b) Two analysis variables, one observation: Perfect error statistics
In the atmosphere, variables tend to be spatially correlated. Estimation of the

atmospheric state is also generally thought to be an underdetermined problem, in other
words, to have fewer observations than degrees of freedom. In this section, we extend
the data assimilation of section 5(a) to simulate these two features by assimilating one
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observation at both the observed location and an unobserved location. The results can
also represent extrapolating information from one observation to any analysis variable
whose errors are on average correlated with, but not the same as, the errors in the
analysis of the observed variable.

Suppose we have one observation, xo
1 D x t

1 C ²o
1 , ²o

1 » N.0; ¾ 2
o1/, and two back-

ground variables: xb
1 at the observation location, and xb

2 at another location (where the
true value is x t

2). xb
1 and xb

2 are unbiased and have errors that are normally distributed
with standard deviations of ¾b1 and ¾b2, respectively. The mean correlation between the
errors in xb

1 and xb
2 is given by c12, where ¡1 · c12 · 1.

The analysis at location 1 is calculated using Eq. (2), and the results are the same
as those in section 5(a). The analysis at location 2 is calculated using the minimum
variance and maximum likelihood estimate of xt

2:

xa
2 D xb

2 C
¾ 2

12

¾ 2
b1 C ¾ 2

o1

.xo
1 ¡ xb

1/; (10)

where

¾ 2
12 D c12¾b1¾b2: (11)

This is a simpli� cation of the 3D-Var or a Kalman � lter to one observation and two
analysis variables. Again, the analysis is performed for 106 realizations of the input
variables, and the realizations are generated using the same error statistics as those
assumed in the data-assimilation algorithm. The errors are de� ned as in section 5(a).

Figure 13 shows the results of the analysis at the unobserved location for different
values of jc12j, when ¾o1 D ¾b1 D ¾b2

¤. When jc12j D 1, the errors in xb
1 and xb

2 are
perfectly correlated, and the results are the same as those in section 5(a). As jc12j de-
creases, both the likelihood of improvement and the mean improvement decrease. When
jc12j is small, degradations are nearly as likely as improvements; however, because the
magnitude of the analysis increment is proportional to jc12j, these degradations tend to
be small. In the limit c12 D 0, xa

2 D xb
2 ; there are no improvements or degradations.

The circumstances in which xa
2 has a larger error than xb

2 can be worked out
analytically and depicted, as in section 5(a). Here, we note only that the estimate at
location 2 can be degraded in two general circumstances: when the estimate at location 1
is degraded, or, if jc12j 6D 1, when the estimate at location 1 is improved. The � rst
can occur only when the observations include errors; the second can occur for error-
free observations. Unlike at an observed location, therefore, assimilating an error-free
observation at an unobserved location can degrade the analysis—even with perfect
knowledge of the observation- and background-error statistics.

These results show that even a ‘perfect’ statistical data-assimilation system with very
good observations can degrade some aspects of an analysis if it has degrees of freedom
that are unobserved. The results also indicate that when the average correlation between
backgrounderrors at an observed location and those at an unobserved location is smaller,
extrapolating data to the unobserved location carries a greater risk of degradation.
This is likely to be important in more realistic, high-dimensional forecasting systems,
when data-assimilation procedures must reconstruct a complex and rapidly changing
atmospheric state from limited information.
¤ When ¾o1 D ¾b1 6D ¾b2, Fig. 13 is nearly identical; panel (a) is the same, and panel (b) has the same shape,
with different values on the y-axis. When ¾o1 6D ¾b1 D ¾b2, Fig. 13 looks similar, but as jc12j approaches 1, the
likelihood of degradation and the mean change in error approach the values for the one-variable example with the
appropriate ratio of ¾b1 : ¾o1 .
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Figure 13. As in Fig. 12, but for the results of assimilating an observation at an unobserved location as a function
of jc12j, the magnitude of the mean correlation between the background errors at the observed location and at the
unobserved location. The assimilation uses the algorithm given by Eq. (10), with perfect knowledge of the error

statistics. Results are shown for ¾b1 D ¾b2 D ¾o; (b) is normalized to ¾o D 1.

(c) Imperfect background-error statistics
Next, we brie� y explore several effects of imperfect knowledge of the background-

error statistics. To do so, we rerun the examples from sections 5(a) and 5(b), but specify
the background-error statistics incorrectly in the data-assimilation algorithm. In the
results discussed here, all of the error distributions remain Gaussian; in other words, we
simulate knowing the shapes of the distributions but not the variances and covariances.
Again, each example is tested over 106 realizations of the input variables, and errors are
de� ned as in section 5(a).

For the one-variable data assimilation from section 5(a), we mis-specify the
background-error statistics by using the distribution N.0; ¾ 2

b / to generate xb, but an
estimate of ¾b, ¾ est

b , in Eq. (2) to calculate xa. Figure 14 shows the results for different
ratios of ¾ est

b to ¾b, when ¾o D ¾b. As expected, the mean improvement in the estimate is
maximized and the variance in the estimate (not shown) is minimized when ¾ est

b D ¾b.
The likelihood of degradation, however, is minimized not when ¾ est

b D ¾b, but when
¾ est

b ¿ ¾b.
Why does the likelihood of degradation increase as ¾ est

b =¾b increases? Recall from
section 5(a) that assimilating an observation can degrade an estimate of the observed
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Figure 14. As in Fig. 12, for results as a function of the ratio between ¾ est
b and ¾b in the one-variable data

assimilation with imperfect knowledge of the error statistics. ¾b is the actual standard deviation of the background
error, used to generate the realizations of xb , and ¾ est

b is the estimated standard deviation of the background error,
used in Eq. (2) to calculate xa . Results are shown for ¾b D ¾o ; (b) is normalized to ¾o D 1.

variable in two ways. Substituting ¾ est
b for ¾b in Eqs. (8) and (9), we see that, for

a given distribution of xb and xo, the likelihood of the � rst type of degradation is
independent of ¾ est

b . The second type of degradation, on the other hand, becomes more
likely as ¾ est

b increases. To visualize why the likelihood of degradation increases, note
that increasing ¾ est

b relative to ¾b increases the magnitude of the analysis increment,
drawing the analysis closer to the observation; in Fig. 11, this does not affect the � rst
type of degradation, but increases the likelihood of the second type of degradation. Thus,
as ¾ est

b =¾b increases, degradations become more likely.
When ¾ est

b À ¾b, the assimilation, thinking that the background errors are large,
overweights the observation. This produces analysis increments that are much larger
than the average background error, so both improvements and degradations tend to
be large. Because degradations are nearly as likely as improvements, however, the
improvements and degradations tend to cancel, leaving a small mean change in error.
When ¾ est

b ¿ ¾b, on the other hand, the assimilation thinks that background errors are
small; it overweights the background variable, producing small analysis increments. In
this situation, improvements are frequent, but they tend to be small.

These results suggest that one can decrease the likelihood that an added observation
will degrade a single realization of an analysis by underestimating the background
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error. Unfortunately, this also decreases the average magnitude of the improvements.
Overestimating the backgrounderror produces larger improvements, but it also produces
more frequent and larger degradations. Thus, when estimating ¾b to assimilate added
data at one time to produce a single realization, there may be a trade-off between
decreasing the likelihood of analysis degradation and increasing the potential for a large
analysis improvement¤.

For the two-variable data assimilation in section 5(b), we � rst simulate knowing
¾b1 and ¾b2, but using an estimate of c12, cest

12 , in Eqs. (10) and (11) to calculate xa
2.

For simplicity, we discuss results for ¾o1 D ¾b1 D ¾b2. When cest
12 and c12 have the same

sign, the general results are similar to those in Fig. 14, with jcest
12 j=jc12j on the x-axis;

the mean change in error at the unobserved location is minimized when cest
12 D c12, but

the likelihood of degradation is minimized when jcest
12 j ¿ jc12j. Overestimating jc12j

increases the risk of degradation because it increases the magnitude of the analysis
increment, as overestimating ¾b does in the one-variable example. One can overestimate
jc12j by, for example, overestimating the correlation length of background errors.

In some circumstances, mis-specifying c12 can cause assimilating an added observa-
tion to degrade more estimates than it improves and to, on average, degrade the estimate.
When cest

12 and c12 have the same sign, this occurs when jc12j 6 0:5 and jcest
12 j > »2jc12j.

When cest
12 and c12 have opposite signs, this occurs for all values of cest

12 and c12. Thus,
if a background-error correlation is signi� cantly overestimated or is estimated with the
wrong sign, at least some aspects of the analysis will, on average, be more accurate if
an added observation is not assimilated.

The two-variable data-assimilation example is also affected by estimates of ¾b1 or
¾b2. Combining Eq. (10) with Eq. (11), we see that ¾b1 appears in both the numerator
and the denominator of the analysis increment at location 2, while ¾b2 appears only
in the numerator. Estimating ¾b1 incorrectly thus affects the analysis increment at the
unobserved location only indirectly, and has an indirect effect on the results. Estimating
¾b2 incorrectly, on the other hand, affects the analysis increment directly. Overestimating
¾b2 tends to increase the magnitude of the analysis increment relative to the magnitude of
the error to be corrected; as in previous examples, this increases the risk of degradation.
In many circumstances, overestimating ¾b2 causes a mean degradation at the unobserved
location.

These examples show that overestimating the magnitude of a background-error
variance or covariance tends to increase the magnitude of the analysis increment, which
increases the risk that adding an observation will degrade an individual realization of
an analysis. The examples also show that although Eqs. (2) and (10) produce analyses
with minimum variance and maximum likelihood, they do not produce analyses that
are most likely to be an improvement over the background values. One can reduce
the likelihood of degrading a single realization of an analysis by underestimating the
magnitude of the background-error statistics. However, this also reduces the average
magnitude of the improvements. Alternatively, one could focus on improving quantities
that the data-assimilation algorithm was designed to minimize, such as the mean error
or the standard deviation of the error, averaged over many realizations. This, like the

¤ Note that when results are measured over many analysis cycles or many realizations of the analysis, one is
probably more concerned with mean results (panel (b) of Fig. 14) than with individual degradations. Panel (b)
of Fig. 14 is symmetric; thus, when the results are averaged over many realizations, the one-variable data-
assimilation example has no preference between overestimating or underestimating the background error, at least
when ¾o D ¾b . This lack of preference may change when the analyses are used as initial conditions for a forecast
or are part of an analysis–forecast cycle.
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results in section 4(c), suggests that when adding observations, it may be bene� cial to
evaluate and interpret the results probabilistically rather than deterministically.

6. FORECAST DEGRADATIONS IN A SIMPLE LOW-DIMENSIONAL CHAOTIC MODEL

The results in section 4 show that observations can degrade analyses and forecasts
in the absence of observation errors and forecast-model errors. Section 5 explores how
assimilating data probabilistically can lead to analysis degradations, isolated from the
effects of error growth in forecasts. In this section, we consider how error growth can
lead to forecast degradations, isolated from the effects of analysis degradations. To do
so, we simulate a data-assimilation system that always improves the initial conditions,
then compare forecasts made using a simple low-dimensional nonlinear model.

Like those in previous sections, the simple system implemented here can be used to
explore many issues. In this study, however, it is used only to demonstrate a simple point:
even with a much better data-assimilation system, the distribution of improvements and
degradations in Fig. 8 would become more symmetric as forecast length increases—
because nonlinear error growth limits predictability in the forecasting system.

The forecast model used is the three-variable nonlinear model from Lorenz (1963).
The governing equations are:

dx

dt
D ¡¾x C ¾y; (12)

dy

dt
D ¡xz C rx ¡ y; (13)

and

dz

dt
D xy ¡ bz: (14)

Following Lorenz (1963), we use the parameter values ¾ D 10, b D 8=3, and r D 28,
which result in chaotic behaviour. The equations are integrated forward in time using a
fourth-order Runge-Kutta scheme and a time step of 0:05 non-dimensional units. To the
extent that the chaotic behaviour of the Lorenz system is similar to that of the QG model
and the real atmosphere, we can use the simple model to illustrate general properties of
the more complex systems. As in the QG experiments, the forecast model is assumed to
be perfect.

To run the experiments, � rst, the Lorenz model is run for a long period of time
from arbitrary initial conditions to create a true run. Following a spin-up period, the
true run is interrupted every time unit to obtain a state xt (D .xt; yt; zt/), which is
analogous to a synoptic situation in the simulated QG system. xt is perturbed two times,
once to produce a simulated background state xb, and once to produce a simulated
analysis state xa. xb ¡ xt is analogous to the error in the initial conditions prior to adding
observations; xa ¡ xt is analogous to the error in the initial conditions after assimilating
the added observations. Next, the Lorenz model is used to produce forecasts from the
simulated background state f .xb/ and from the simulated analysis state f .xa/. Each of
the forecasts is evaluated with respect to the corresponding true state f .xt/, with a root-
mean-square-averagenorm. Finally, for each forecast, the change in error resulting from
the simulated added observations is calculated according to the de� nition in Eq. (5). This
procedure is repeated for 104 states xt.

In the example shown, only the variable x is perturbed. The same perturbations are
used at each time: xb D xt C 0:1 and xa D xt C 0:01. Thus, the simulated assimilation of
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Figure 15. As in Fig. 8, but for absolute change in the error in the initial conditions (a) and in the error in forecasts
of three different lengths, in the three-variable Lorenz model. The experiments are described in section 6. The error
in the simulated ‘initial conditions without added observations ’ is always the same (0.1 in x), as is the error in
the simulated ‘initial conditions with added observations ’ (0.01 in x). In other words, adding observations always

reduces the initial-condition error by 90% and does not change the direction of the error.

the added observations always reduces the error in the initial conditions by 90%, without
changing the direction of the error. The simulated data assimilation also improves the
initial conditions in all norms. In more realistic assimilation and forecasting systems,
forecast degradations can be caused by analysis degradations, or by an analysis that
is improved on average but is degraded in some small rapidly growing sense. By
simulating the data-assimilation system, we avoid the degradations caused by how the
assimilation incorporates information at a single time, leaving only those attributable to
diverging forecast trajectories.

Figure 15 depicts the histogram of 1e for forecasts of four different lengths¤. One
can visualize how, as the three trajectories travel around the attractor, they eventually
diverge so that f .xb/ is at times closer to f .xt/ than f .xa/ is—this appears as a ‘degra-
dation’. How quickly a degradation appears depends on how quickly the trajectories
diverge given their initial positions on the attractor. This implies that forecasts of a
certain length are, in general, more likely to be degraded when the initial conditions
are further apart and when errors are growing more rapidly. As one attempts to forecast
¤ Results are qualitatively similar for other choices of perturbations for xb and xa ; the primary difference is the
rate at which degradations tend to occur.
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further in advance, adding observations to the initial conditions become less and less
likely to improve a deterministic forecast. At some forecast length, f .xt/, f .xb/, and
f .xa/ are related no more closely than randomly selected states in the climatology, and
degradations are as likely as improvements.

The results discussed in this section are only meant to provide a simple illustration
of how forecast degradations can occur in systems that have limited predictability, even
when good information is assimilated well. There are many issues that we have not
addressed, including the roles of linear and nonlinear error growth in different situations
and on different time-scales, and the role of model errors. As one moves to more realistic
forecasting systems, these interactions become more important and the results become
more complex. Many of the degradations in Fig. 8, for example, are probably caused by
how the detailed structure of the analysis increment interacts with the evolution of the
synoptic situation. An important next step, left for future work, is to investigate in more
detail how and why observations can degrade forecasts in speci� c situations.

7. INCREASING THE LIKELIHOOD AND MAGNITUDE OF IMPROVEMENT IN THE
SIMULATED SYSTEM

As demonstrated in sections 5 and 6, adding observations can degrade analyses
even if the data-assimilation system knows the error statistics perfectly, and adding
observations can degrade forecasts even if the data-assimilation system always improves
the initial conditions. If we cannot avoid the risk of degrading individual realizations
of analyses or forecasts, then we may wish to increase the likelihood or magnitude
of improvement that is expected, averaged over many realizations. In this section, we
begin to explore strategies to do so by identifying circumstances in the QG and 3D-
Var simulated system in which improvements are more likely and the mean change is a
larger improvement.

Here, we consider primarily the role of the data-assimilation system, focusing on
features of the results that are common among the cases studied and that are likely to be
relevant in other data-assimilation systems and forecast models. First, we demonstrate
that forecast improvement is, in general, more likely and larger when observations
improve the analysis by larger amounts. Next, we show that analysis and forecast
improvement is more likely and on average larger when observations are taken where
ensemble spread is large, in other words where initial-condition errors are likely to
be large. Then, we brie� y discuss how the results depend on the spatial variation
in ensemble spread at and near the observation location. Because the relationships
discussed are averaged across many sets of observations, they do not necessarily hold
in any speci� c situation. In practice, however, one can only attempt to predict expected
quantities.

To help us interpret the results in this section, we use several of the concepts
developed in sections 5 and 6 using low-dimensional systems. Unfortunately, the low-
dimensional results cannot be extended directly to the QG and 3D-Var simulated
system for several reasons. First, unlike the low-dimensional data-assimilation results
presented, the 3D-Var results shown are for error-free observations. Second, 3D-Var
experiments have multiple observations and many analysis locations, with correlated
observation errors and correlated backgrounderrors. This, along with the error growth in
the QG model, causes complex vertical, horizontal, and temporal spreading of the data,
making it dif� cult to differentiate among causes of degradations. To account for these
differences, in this section we use only those results from low-dimensional systems that
are valid for error-free observations and that we believe extend to higher-dimensional
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Figure 16. Forecast-error changes produced by test sets of observations that produce analysis-error changes in
different ranges. Results are shown for the fraction of changes that are forecast degradations of any magnitude (a)
and for the mean percent change in forecast error (b), for 12-hour forecasts (¦), 24-hour forecasts (C), and 48-
hour forecasts (£). To generate the plots, results were compiled from all of the approximately 5 £ 105 tests
of added observations (the same data as in Fig. 8) and divided into 50, approximately equal bins according to
change in analysis error. In each bin, the fraction of forecast degradations and the mean change in forecast error
were calculated, then plotted as a function of the mean change in analysis error for the bin. Each symbol plotted
therefore represents a summary over approximately 104 test sets of observations. The few test sets of observations
that produced no change in analysis error were removed. In (b), the variability of the forecast-error changes within
each bin is largest for the bin with the largest analysis improvements and smallest for bins with nearly no change in
analysis. The standard deviations of the forecast-error changes within the bins vary from 0.013–0.062 for 12-hour

forecasts, from 0.025–0.091 for 24-hour forecasts, and from 0.040–0.123 for 48-hour forecasts.

data-assimilation systems with more than one observation. In addition, the concepts
from sections 5 and 6 are used only to interpret general aspects of the high-dimensional
results.

(a) Observing where the data assimilation is likely to reduce analysis error
Figure 16 illustrates the relationship between the changes in analysis error and the

expected changes in forecast error when observations are added in the simulated system.
Each data point represents an average over a bin containing approximately 104 tests
of added observations; details are given in the � gure caption. Figure 16 shows that
added observations that improve analyses by a larger amount are more likely to improve
forecasts. They also, on average, improve forecasts more. Small analysis improvements,
on the other hand, tend to degrade nearly as many forecasts as they improve, and analysis
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degradations tend to degrade forecasts. The link between improving the analysis and
improving forecasts is only true on average, and it becomes less clear as forecast length
increases.

The mechanisms for the degradations depend on the spatial structure of the errors
and the error growth characteristics of the synoptic situation, neither of which are
evaluated here. Thus, the results shown do not address the speci� c reasons why some
improved analyses degrade forecasts nor why they do so on different time-scales.
The results also measure only changes in the overall magnitude of the error, without
accounting for changes in the direction of the error. Because small errors can grow
rapidly in some directions, one could not say a priori that reducing the global-average
analysis error would tend to reduce forecast errors. Figure 16 demonstrates, however,
that even considering only global-average errors, large analysis improvements are much
more likely than small analysis improvements (or analysis degradations) to lead to
forecast improvements and to large forecast improvements.

Plotting the results with the axes switched and binned by forecast-error change
(not shown) demonstrates that larger forecast improvements tend to be produced by
observations that improve the analysis and that do so by larger amounts. Thus, averaged
over all atmospheric situations, we are more likely to reduce the forecast error by a
large amount if we can reduce the analysis error by a large amount. This suggests that,
when adding observations, large analysis and forecast improvements are more likely if
we understand and consider the circumstances in which the data-assimilation system is
more likely (or less likely) to use additional data well.

(b) Observing where initial-condition errors are likely to be large
Recall from sections 4(a) and 4(b) that in individual synoptic situations, the analysis

error tends to be reduced the most when observations are added where the ensemble
spread is large. Figure 17 con� rms this, averaged over all cases: where ensemble spread
is larger, observations are more likely to improve analyses, and they on average improve
analyses more¤. Magnitude of ensemble spread at the observation location and time is
also a predictor of forecast-error reduction. This suggests that observations at locations
with larger ensemble spread tend to reduce not only the global-average analysis error,
but also the portion of the analysis error that is important for forecasts. As in section 7(a),
the relationship holds only on average, and it becomes weaker for longer-term forecasts.

Ensemble spread can be used to estimate the magnitude of initial-condition errors†.
Figure 17, therefore, suggests that the 3D-Var data assimilation tends to use obser-
vational information to correct large background errors better than it corrects small
background errors. This is probably caused in part by features of this 3D-Var scheme.
For example, in regions with small ensemble spread, this 3D-Var scheme tends to use
background-error statistics that are too large. As shown in section 5(c), overestimating
background-error statistics increases the magnitude of the analysis increment, which
increases the risk of degradation and decreases the mean change in error from adding
observations. Incorrect background-errorstatistics in the 3D-Var model could, therefore,

¤ The unusually high likelihood of analysis improvement at locations with very small ensemble spread has not
been investigated in detail. Because these locations tend to have very small initial-condition errors, however, the
improvements are very small. The likelihood of degradation also increases rapidly as forecasts are made. This
suggests that at locations with very small ensemble spread, assimilating added error-free observations tends to
decrease the mean analysis error slightly but does not improve its spatial structure.
† Note that the ensemble, described in section 2(c), is produced by perturbing not realistic observations, but error-
free observations. Thus, it cannot be constructed in the real world. For the general results discussed, however, the
difference between the ensemble used here and a more realistic perturbed observation ensemble is small.
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Figure 17. As in Fig. 16, for results separated into 50 approximately equal bins of ensemble spread at the test
observation location and time. Results are shown for changes in errors in analyses (±), 12-hour forecasts (¦), 24-
hour forecasts (C), and 48-hour forecasts (£). The ensemble contains 97 12-hour forecasts valid at the observation
time; the ensemble spread is averaged over the � ve interior levels, with an energy norm. In (b), the variability of
the error changes within each bin is smallest for the bin of smallest ensemble spread and increases with increasing
ensemble spread. The standard deviations within the bins vary from 0.005–0.047 for analyses, from 0.010–0.069

for 12-hour forecasts, from 0.016–0.084 for 24-hour forecasts, and from 0.024–0.108 for 48-hour forecasts.

account for the larger risk of degradation and smaller mean-error changes on the left-
hand side of Fig. 17.

In regions with large ensemble spread, this 3D-Var tends to use background-error
statistics that are too small. From the results in section 5(c), we expect this to cause
a small likelihood of degradation and a small mean change in error on the right-
hand side of Fig. 17—instead, the mean change in error is a large improvement.
This suggests that the relationships in Fig. 17 are not due solely to the time- and
space-invariant magnitudes of the background-error statistics in the 3D-Var scheme.
Furthermore, recall from section 5(a) that, even with perfect knowledge of the error
statistics, analysis improvements are more likely and the mean change is a larger
improvement when observations are added where background errors tend to be large
compared with observation errors. Thus, even using a data-assimilation system with
better error statistics than the 3D-Var, we are likely to have more improvements and a
larger mean improvement when observations are added where ensemble spread is large.
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Figure 18. As in Fig. 17, for results binned by the vertical gradient of ensemble spread at observation location
and time. The vertical gradient of ensemble spread is de� ned as the ratio between the maximum ensemble spread
at any level and the minimum ensemble spread at any level. Results are shown for changes in errors in 24-hour
forecasts (C) and 48-hour forecasts (£). Results for changes in errors in analyses and in 12-hour forecasts show
a similar trend in the likelihood of degradation, but not in mean change in error; they are not shown to facilitate
distinguishing the trend in the 24-hour and 48-hour forecasts. In (b), the variability of the error changes within
each bin is large compared with the mean results; the standard deviations within the bins vary from 0.044–0.050

for 24-hour forecasts and from 0.060–0.069 for 48-hour forecasts.

(c) Observing where initial-condition errors are likely to have less vertical structure
The results in section 7(b) are for ensemble spread averaged over all levels. As

Fig. 18 shows, the likelihood of improvement and the mean change in error in 1–2-day
forecasts are also larger when observations are added at locations with a small vertical
gradient in ensemble spread. Results for changes in errors in analyses and in 12-hour
forecasts exhibit a similar trend in the likelihood of improvement, but not in mean
change in error. This suggests that on average, the forecast degradations at locations
with larger vertical gradient in ensemble spread are caused by somewhat different
mechanisms than the degradations discussed in section 7(b), mechanisms more closely
linked with how the errors grow in time.

The relationship in Fig. 18 may occur because larger vertical variation in ensemble
spread tends to occur in synoptic situations that are more likely to be associated with
degradations. Given the small number of cases tested, we cannot prove or disprove this
hypothesis. An examination of the error changes at different levels in individual cases,
however, suggests that the relationship in Fig. 18 occurs at least in part because the
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data-assimilation system has dif� culty correcting vertical structure in initial-condition
errors. For example, at locations and times when the size of the ensemble spread is
different at different levels, the analysis is often improved at levels with large spread and
degraded at levels with small spread. Within 12–24 hours, this often leads to a forecast
degradation at all levels. We have also noted a relationship in individual cases between
horizontal variation in initial-condition errors and forecast degradations, but have not
identi� ed a parameter that shows this on average.

Our experience with the 3D-Var method supports the hypothesis that this data-
assimilation system has dif� culty correcting vertical structure in errors. For example,
even with many observations, the 3D-Var scheme has dif� culty correcting the vertical
structure of initial-condition errors in terms of interior potential vorticity (Morss 1999).
In general, the 3D-Var scheme has more dif� culty spreading information to correct
errors when the real statistics of the background errors differ greatly from the time-
independent and nearly isotropic statistics assumed, such as when errors have signi� cant
spatial structure.

It is not clear how the results in Fig. 18 extend to more sophisticated data-
assimilation systems. Nevertheless, the results in section 5 suggest that in any statistical
data-assimilation system, with or without good knowledge of the error statistics, there
are circumstances in which the likelihood of improvement and the expected magnitude
of improvement are larger. Small vertical variation in ensemble spread is, at minimum,
such a circumstance for this 3D-Var scheme. Thus, we propose that, when adding or
adapting observations, it will be bene� cial to understand the strengths and weaknesses
of the data-assimilation system being used, in the context of the forecast model being
used. With this knowledge, we can adjust observing strategies based on when and where
the data-assimilation system is likely to perform best with respect to our goals.

8. CONCLUSIONS

The results from the simulated QG and 3D-Var system show that, even with perfect
observations and a perfect forecast model, adding observations can degrade analyses
and forecasts. They also provide a general idea of how likely such degradations are and
how large they may be. The in� uence of added observations depends not only on the
synoptic situation, the data-assimilation system, and the forecast model, but also on the
speci� c locations of added observations and the speci� c initial-condition errors. Because
of these dependencies, results in individual cases are complex and can vary signi� cantly
with the details of the experiment. This study focuses on several aspects of the results
that are common among many test sets of added observations and that we believe are
likely to be relevant for a variety of atmospheric data-assimilation systems and forecast
models.

De� ciencies in the 3D-Var data-assimilation system contribute to many of the degra-
dations in the simulated system. Results from experiments with two types of low-
dimensional systems, however, indicate that even with a much better data-assimilation
system, adding observations would still degrade some analyses and forecasts. First,
low-dimensional statistical data-assimilation examples demonstrate that even with per-
fect knowledge of the error statistics, assimilating added observations degrades some
analyses—perfect information about the statistics of errors is not equivalent to perfect
information about the errors in an individual realization. Then, experiments with a low-
dimensional nonlinear forecast model con� rm that nonlinear error growth degrades
some forecasts, even with a good forecast model and a data-assimilation system that
corrects initial-condition errors well. These results suggest that the risk of degradation
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is inherent in statistical data assimilation and in nonlinear prediction. They also show
why many cases are needed to assess the bene� ts of any data-assimilation or observing
strategy.

In the low-dimensional statistical data-assimilation examples, analysis degrada-
tions can have three causes: observation errors, extrapolation of data, and incorrect
background-error statistics. Related to each cause, the examples identify a circumstance
in which any statistical data-assimilation system is more likely to use added information
to improve analyses. First, even with perfect knowledge of the error statistics, incor-
porating data at an observed location is more likely to improve an analysis when the
observation error is likely to be small compared with the background error. Second,
when extrapolating information from an observed location to an unobserved location,
improvements are more likely when the mean correlation between the background er-
rors at the two locations is larger. Third, underestimating background-error statistics
produces more improvements than overestimating them. In the � rst two circumstances,
not only are improvements more likely, but the mean change in error is also a larger
improvement. In the third circumstance, improvements are more likely, but the mean
change in error is small; underestimating the background-error statistics also decreases
the average magnitude of analysis improvements.

The results also identify three circumstances in the simulated QG and 3D-Var
system in which, averaged over all situations, adding observations is more likely to
improve analyses and forecasts. First, forecasts are more likely to be improved by added
observations that decrease global-average analysis errors by a larger amount. Second,
analysis and forecast improvements are more likely when observations are added
at locations where ensemble spread is larger, in other words where initial-condition
errors are likely to be larger. Third, forecasts are more likely to be improved when
observations are added where the ensemble spread has less vertical structure. In the � rst
two circumstances, the mean change in error is also a signi� cantly larger improvement.
Further work is still needed to explore how information about the dynamical situation
can be used, either alone or in conjunction with information about the likely initial-
condition errors and the data-assimilation system, to identify circumstances that depend
on the synoptic situation.

Together, these results provide strong evidence that if we incorporate an understand-
ing of how the data-assimilation system and a forecast model behave into observing
strategies, we can increase the likelihood of improvement and the expected improvement
from adding or adapting observations. They also suggest several preliminary, simple
strategies for doing so across a variety of situations. One example is to observe where
the observation errors are likely to be small compared with the errors the observations
are supposed to correct. The circumstances discussed in this paper are neither optimal
nor exhaustive, but they are a � rst step towards understanding situations in which adding
observations is more likely to improve analyses and forecasts and to improve them by a
large amount.

Overall, the results indicate that when adding observations to improve speci� c deter-
ministic forecasts, analysis and forecast degradations cannot be avoided. This suggests
that assimilating added data, and using the resulting initial conditions to produce fore-
casts, are better interpreted as probabilistic rather than deterministic processes. If one
wishes to improve a single realization of a forecast, however, the results identify several
features of statistical data-assimilation systems and nonlinear forecast models that may
be important to incorporate into strategies to select locations for added observations.
Thus, the study not only helps us understand how adding observations might in� u-
ence analysis and forecast errors in a variety of data-assimilation systems and forecast
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models, but it also raises several issues to consider when developing future observing,
data-assimilation, and forecasting systems.
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