2368

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 40

The Lagrangian Parcel Dynamics of Moist Symmetric Instability

KERRY A. EMANUEL
Department of Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge 02139
(Manuscript received 18 February 1983, in final form 17 June 1983)

ABSTRACT

A simple model describing the slantwise ascent of a two-dimensional horizontal air tube subject to moist
symmetric instability is developed under the assumptions that the Froude number is small and that mixing
is absent. It is shown that, in general, the horizontal velocities attained by the tube are comparable 10 those
of the mean flow and that vertical velocities of up to a few meters per second are possible. The tube ascends
slantwise in such a way that its buoyancy remains nearly zero, unless the environment is very nearly moist
adiabatic, in which case ascent at an angle of 45° to the vertical is preferred. Results of the analysis support
the contentions of Bennetts and Hoskins and Emanuel that moist symmetric instability is the cause of some
mesoscale rainbands. In a companion paper, it is demonstrated that the stability of the moist baroclinic
atmosphere to two-dimensional slantwise displacements of arbitrary magnitude can be approximately assessed
by reversibly lifting parcels along surfaces of constant angular momentum and comparing their density with

that of their environment.

1. Introduction

A conspicuous and enigmatic feature of many ex-
tratropical cyclones is the presence of a multitude of
banded features in the clouds and precipitation as-
sociated with the cyclones. These range from the
mesoscale precipitation bands discussed by Browning
and Harrold (1969), Houze et al. (1976), and many
others to the somewhat more subtle phenomenon of
multiple cloud layers east of the surface cyclone, as
often seen by the observant air traveler. Not the least
puzzling is the horizontal scale of the bands, which
most often lies in a mesoscale range of from 50 to
500 km. In an attempt to explain these bands, it is
natural to seek instabilities of larger scale flows which
prefer these scales. Emanuel (1979) showed that, in
addition to frontogenesis, symmetric instability is an
instability which results in two-dimensional meso-
scale motions; here “mesoscale” is taken to mean that
the Rossby number of the flow is of order unity, and
the Rossby numbser is defined as

V.H

RoafL ,

where V/, is the vertical shear of the mean flow, H the
depth of the unstable layer, f the Coriolis parameter,
and L the horizontal scale of the motions resulting
from the instability. Emanuel (1979) also suggested
that symmetric instability may play a role in the for-
mation of cloud and rain bands and squall lines, and
Bennetts and Hoskins (1979; hereafter referred to as
BH) demonstrate that the instability is likely to occur
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in the moist baroclinic atmosphere, and suggested
that frontal rainbands may result from such an in-
stability. Motions resulting from this instability gen-
erally take the form of a series of slanted roll circu-
lations, with axes along the mean geostrophic shear
and with slopes in the vertical plane comparable to
those of isentropic surfaces. A review of the classical
theory of dry symmetric instability may be found in
Emanuel (1979).

The addition of phase changes of water and the
associated latent heating complicates the theoretical
problem of symmetric instability immensely, in part
since the effective stability of the atmosphere to ver-
tical motions depends on the sign and magnitude of
the vertical displacement. Despite the enormous in-
crease in the complexity of the problem, one simpli-
fication occurs when the atmosphere is unstable only
to upward displacements of sufficient magnitude: the
resulting motions become largely localized in the vi-
cinity of the clouds, and thus a first approximation
to the convective dynamics can be obtained by as-
suming that the region outside the area where water
is condensed and evaporated is unperturbed. The rec-
ognition of this simplification led originally to the
“‘parcel dynamics” approach 'to moist convection, in
which a moist parcel is assumed to ascend through
and mix with its environment, the latter of which is
taken to be otherwise unperturbed by the convection.
An important assumption applied in parcel theory,
which is directly related to the assumption of a sta-
tionary environment, is that perturbation pressure
forces on the parcel may be neglected. A quantitative
measure of the validity of this assumption is the
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Froude number, which is broadly defined as the ratio
of pressure gradient to body forces:

lanl

F.._
Fy

where « is the specific volume, p the pressure, and
F, the sum of the body forces acting on a parcel.
When the Froude number is small, the motion of the
parcel can be estimated by assessing only the body
forces (e.g., buoyancy) acting on the parcel. An a pos-
teriori check on the smallness of the Froude number
can be made by diagnosing the pressure field from
the computed velocity field. We shall later show that
the Froude number typical of moist symmetric in-
stability will in general be somewhat smaller than that
. associated with moist convection.

Before proceeding, it is necessary to make a dis-
tinction between the type of moist symmetric insta-
bility considered by BH and the parcel instability ex-
amined here. In the former, the instability of an entire
Sfluid layer lifted to saturation is examined; BH were
able to show that the inviscid criterion for symmetric
instability in cloudy air is the same as that for dry
symmetric instability, but with the use of wet bulb
potential temperature instead of potential tempera-
ture. Instead, we consider here the problem of local
conditional moist symmetric instability, which results
from the lifting of a spatially isolated small mass of
air; the environment of such a parcel being considered
to be unsaturated. I shall hereafter refer to this dis-
tinction as one between layer and parcel instability.
The distinction is entirely analogous to the difference
between convective and parcel instability as these
terms are applied to the assessment of the suscepti-
bility of the atmosphere to moist convection. In gen-
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eral, layer instability is a necessary but insufficient
condition for parcel instability. The parcel instability
is generally regarded as being pertinent to the study
of moist convection, since the environment of con-
vective clouds is generally unsaturated. Whether this
may also be true of moist symmetric instability, how-
ever, remains to be seen.

2. The parcel dynamics of moist symmetric instabil-
ity

We consider a purely meridional, steady, moist
baroclinic shear flow in thermal wind balance. By
definition, the virtual potential temperature (4,) must
in this case be a function of x and z only. Now con-
sider the disposition of a small “tube” of air which
extends indefinitely in the y direction and which is
initially at rest at z = O (Fig. 1). We wish to examine
the stability of this tube of air after it has been dis-
placed a finite distance in an arbitrary direction in
the x-z plane. In order to evaluate this stability, we
initially neglect perturbation pressure forces which
act on the moving tube, and also disregard the tur-
bulent mixing of the air in the tube with its environ-
ment; the validity of these assumptions will be tested -
a posteriori.

Under these conditions, it is easxly shown that a
quantity M, where

M=v+fx, (1)

is conserved following the motion of the tube. This
follows from the momentum equation in y in the
absence of variations in y:

dM _ do

7 —a—;+fu=0.

X

F1G. 1. Hypothetical configuration of M (dashed) and S (solid) surfaces as viewed in a plane

which is orthogonal to the mean vertical shear vector. The S surface is defined with respect

. to the encircled surface tube. The position of this tube and point D are stable equilibrium

positions for reversible displacements of the surface tube, while point B is an unstable equi-

librium position. The tube, when reversibly displaced to A, w111 return to its initial position;
if it is displaced to C it will accelerate toward D.
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If the mean meridional flow increases upward, then
M must increase upward and with x, according to
(1). A possible surface along which M is constant and
equal to the value of M in the air tube under con-

sideration is illustrated by the dashed line in Fig. 1. -

In general, the virtual potential temperature (4,) of
the air tube will also be conserved unless phase
changes of water-occur, in which case 6, may be con-
sidered to be a function of z alone, following the
motion of the tube and neglecting the effect of hor-
izontal variations of pressure on the saturation mix-

~ ing ratio. We define a particular surface S in the x-
z plane such that the 8, of the air tube lifted reversibly
along the surface is always equal to that of the en-
vironment. The x and z coordinates of such a surface
may be obtained from the definition

()

where the subscript ¢ refers to the tube quantity, and
Xo and z, are the initial coordinates of the tube. It
should be noted that .S surfaces, unlike M surfaces,
cannot be defined without reference to a particular
sample of air. In the special case where the air tube
is dry, 8,, = 8, = constant, and § surfaces correspond
to @ surfaces. If the environment is everywhere sat-
urated, S surfaces are equivalent to surfaces of con-
stant equivalent potential temperature.

A possible configuration of such a surface, defined
with respect to the 0, of a surface air tube, is illustrated
by the solid line in Fig. 1. Between the initial position
of the tube and its lifted condensation level (LCL), the
S surface is simply a surface of constant 6,. Above the
LCL, the S surface is neither a surface of constant 0,
nor one of constant 6,,, but simply continues to rep-
resent the locus of points along which the tube’s buoy-

0.(x, z) = Oudx0, 2o, 2),

. ancy vanishes. )

Again neglecting mixing and perturbation pressure
forces, we may write the equations of motion of the
tube in x and z as

%=f(v_vg)=f(M_Mg), 3
w_ 8 o _
dt - 000 (ovt 0vg)s ) (4)

where f'is the Coriolis parameter (assumed constant),
6,0 is a constant reference virtual potential temper-
ature, and the subscript g refers to the geostrophically
balanced M and 6, which constitute the unperturbed
environment of the tube. The thermal wind relation
‘requires that )
» My _ g B

. G
3z B, Ox 5)

The expressions (3) and (4) simply show that the x
and z accelerations experienced by the tube will be
proportional to its M and 6, surpluses, respectively.
In reference to Figs. 1 and Eqgs. (3) and (4), it is seen
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that if the air tube initially at rest at z = 0 is displaced

* to point A, its M and 6, will be greater than and less

than those of its environment, respectively, and the
net acceleration on the tube will act to return it to
its initial position. By similar reasoning, a displace-
ment to point C will result in an upward and west-
ward unstable acceleration. Points B and D as well
as the'initial point are equilibrium positions of the
air tube; point D and the initial point represent stable
equilibria while point B is an unstable equilibrium
position. Point B may be regarded as the “level of
free slantwise convection (LFS).”

As an illustration of the motion of a tube as governed
by (3) and (4), we examine a simple atmosphere in
which, in a lower layer, v is a linear function of z and
X, the air is saturated, and the lapse rate of the at-

mosphere is exactly moist adiabatic at a particular

longitude x = 0. In an upper layer, above z = H, there
is no vertical shear and the lapse rate is more stable
than moist adiabatic. We examine the motion. of a
tube initially at rest at x = z = 0 with M = M, and
8, = 0,,. The configuration of M and S surfaces em-
anating from x = z = 0 is illustrated in Fig. 2. By
definition, the M and 8, surfaces-in the lower layer
obey

M, =9,z+ (f+ v)x =0,z + 1x, 6)

9,
0.0 = 0.,42) + ?Oﬁzx, (7

where ¥, and v, are the constant vertical and horizontal
shears of v, 7 is the mean absolute vorticity in the z
direction, and the last term in (7) reflects the thermal
wind balance (5). In the upper layer, the M surfaces
are vertical while the S surfaces are horizontal, so that
both the M and S surfaces have kinks at z = H, as
shown in Fig. 2. Note that qualitatively, the tube has
an unstable equilibrium at its initial position, and after
motion begins, it will arrive at point 1 (Fig. 2) and
oscillate around this new equilibrium point. The hor-
izontal distance traversed between these equilibrium
positions is

_OMpEE by,
OM/dx ]

®

Note that the Rossby number defined using this scale
is close to 1. Since typically ¥, lies in the range 10-
1007, L will be between 10 and 100H.

The trajectory of the tube up until it reaches z
= H can be found by integrating (3) and (4). Substi-
tuting (6) and (7), we have

di d? _ -

;d—‘t‘ = d—t’f = —f(B,z + 7, ©)
5

dw d‘’z (10)

@ ar s I
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F1G. 2. Configuration of M (dashed) and S (solid) surfaces for the simple non-hydrostatic
calculation of the Lagrangian motion of the surface tube. The stable equilibrium position of

this tube is at point 1.

Differentiating (9) twice in time and substituting
from (10) yields
d*x d’x
— 4+ -2 2—22 = Q. 1
dt“ f"dtz S x=0 (1)
Solutions of (11) will have the general form exp(o,?),
with
ol =3fal-1 (1 + 40,77 = £fp,. (12)
The approximation in (12) can be made when 7,
> 7, which is very well satisfied even in weak baro-
clinic flows. The general solution of (11) with speci-
fied initial conditions is

Ug — Wo

sinh(o?) + 2ot %o
20

0 .
x= sin(at),
e (o)

(13)

Wo — Uy . U+ wy . -

=0 sinh(ar) + ———sin(s?), (14)
20 . 20

where u, and w, are the initial horizontal and vertical

velocities, respectively, and the tube is assumed to lie

initially at x = z = 0. Here we take

a=(f8)"" (15)

Tt is clear from (13) and (14) that at large time, the
tube accelerates upward in such a way that x = —z;
i.e., at a 45° angle to the vertical. This will be true
at all times provided that uy = —wy, otherwise the
tube will also execute an oscillation about the 45°
trajectory. This trajectory, to a close approximation,
lies halfway between the M and S surfaces. The ve-
locities associated with the ascent are

z=

u = 3(uo — wo) cosh(at) + 3(uo + wo) cos(a?),

(16)
= 1(wp — uo) cosh(at) + 3(uo + wo) cos(e?). (17)

In the limit of small #, and w, and large time, we
may easily substitute x for ¢ as the independent vari-
able, from (13), whence we obtain

(18)

By the time the tube reaches z = H, it will have an
upward velocity of ¢H, which from (15), will usually
be on the order of several meters per second.

In reference to Fig. 2, it is clear that after the tube
reaches z = H, x = —H, it will begin to accelerate -
horizontally toward its new equilibrium position,
while also executing an oscillation about the hori-
zontal S surface. Ignoring this oscillation, we can re-
start the integration of (6) using

z=—X, U=0X, W= —0X

M, = 0,H + 7x,
with the initial conditions taken from (18):

=-H y, U™ —oH, ,

and with wy set equal to zero by way of disregarding
the vertical oscillation. The solution may be expressed
with x as the independent variable:

u? = f[0.H(—H — 2x) + /(H* — x?)], (19)
where for consistency u is taken to be negative. From
the above, it is evident that the maximum velocity
occurs at the equilibrium position, x = —v,H/%, and
again assuming that ¥, > 7, this velocity is nearly
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equal to a v,H(f/9)'. Thus the maximum velocity "

attained by the tube is comparable to the velocity of
the mean flow. The maximum penetration of the tube
will be at x =~ —20,H/7.

The most serious deficiency of this model is prob-
ably the neglect of turbulent mixing between the tube
and its environment. While the velocities in the x~z
plane are small during the ascent of the tube, very
large differences between the meridional velocity of
the tube and that of its environment develop. It seems
very likely that waves will develop in the direction
along the tube, destroying its initial symmetry. A
transition to turbulence is quite likely to occur early
in the tube’s trajectory; the validity of the aforemen-
tioned solution beyond this point is thus highly ques-
tionable.

Another simple case which may be less prone to
turbulence occurs when the M and S surfaces are flat

" planes (and the S surface is not vertical). Such will
be the case when

M, =M, + 9,z + 7x,
Bug = 8ul2) + N’z + f0.x,

(20)
2D

where N is a constant which can be interpreted as the
local buoyancy frequency of the tube. We again de-
fine an upper layer where 9, = 0, so that both the A/
and S surfaces have kinks at z = H (Fig. 3).
Substituting (20) and (21) into (3) and (4) yields

d’x _ _

e —f(0.z + 7x), (22)
2

%ﬁ = —N%2 — fD.x. (23)

If both the M and S surfaces have small slopes, then
on the average, the vertical velocities and accelera-
tions will be much less than their horizontal coun-
terparts and the hydrostatic approximation can be
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made. Thus we set (23) equal to zero, which also has
the effect of eliminating oscillations in the system.

Then
= —f0,x/N?, (24)

d2
ar

The solution of (25) can be expressed in terms of x
as the independent variable. In the limit of vanishing
initial velocity, we have

= BN — W/ f)x=ox.  (25)

(26)

The solutions (24) and (26) describe the tube’s ascent
which, in the hydrostatic limit, is directly along an
S'surface. When the tube reaches z = H, its horizontal .
velocity will be

1/2
u= _UO (_ - ﬂ/f) )

where v, = 0,H and Ri = N?/3,%

Following the same procedure as in the moist
adiabatic case, we can find the zonal velocity of the
tube after it reaches z = H; it is the negative root of

u? = —[2fx + f7x?] — 02 Ri.  (28)

We find that the maximum velocity achieved by the
tube is vo(f77 — Ri)"?, which occurs at x = —v/7.
The maximum zonal penetration of the tube in this

case is
= —von '[1 + (1 — 7/ Ri)*].

The tube again reaches a new equilibrium after hav-
ing traversed a horizontal distance which makes the
Rossby number 1. Since the tubes follow S surfaces
they have no buoyancy, and since the flow in this
case is statically stable, the local Richardson number
in the vicinity of the tubes may not be so small that
turbulence sets in. In particular, the maximum zonal

u=ox, w=—f0,u/N>.

27

xmax
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FIG. 3. As in Fig. 2, but for the hydrostatic case.
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velocity achieved by the tube, and the maximum dif-
ference between the tube’s meridional velocity and
that of its environment are, respectively,

Umax = vO(ﬂ’_‘I - Ri)l/zy
|Mt - Menlmax = UO(1 -1 Rl/f)

The condition that Ri = f/7 is just the condition that
the S and M surfaces coincide, and this is in turn the
marginal state for instability. If the flow is only weakly
unstable, and provided that the slantwise ascending
motion is not too narrowly confined, the flow may
remain laminar. When the conditions are more su-
percritical, turbulence is likely since the velocities
within the comparatively narrow ascending region
will be comparable to those of the mean flow.

By contrast to the assumption of adiabatic ascent,
the small Fronde number approximation applies very
well in this problem, as a consequence of the large
aspect ratio of the drafts which result. This can be
- demonstrated by diagnosing the perturbation pres-
sure and thereby determining the order of magnitude
of the perturbation pressure gradient acceleration.
Taking the divergence of the Boussinesq form of the
inviscid primitive equations in two dimensions, we

+2——

obtain
(2
oz ox oz dx oz’

where & is a reference specific volume, and primes

av’

) ow du
aVvip' =fa +

refer to departures from geostrophic and hydrostatic -

equilibrium. Referring to Fig. 4, we make the follow-
ing estimates of the magnitudes of each term in the
above expression:

~ — —

(92)2 _ (6_W)2
ax a9z
Using these estimates, we estimate the Froude num-
ber for horizontal accelerations as
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~

* &op/ox u?
Fr,= I ~~ ﬁ),dsmé' .
Taking the liberal estimates #’' ~ v’ =~ v, and using
sinf ~ fv,/N?,

sin20(1 +

 in2 H L)

Fr, ~ sin 0(1 + 4 Ri

Provided, then, that d > Ri~'H sinf, the effective
Froude number will be very small in the hydrostatic
case; this is effectively a consequence of the large as-
pect ratio of the draft.

Boundaries and the finite convergence of mass into
the ascending moist flow may have important con-
sequences on the further development of the insta-
bility. Fig. 5 illustrates the qualitative nature of the
two-dimensional finite mass circulation resulting
from conditional symmetric instability, following the
present work, that of BH, and Emanuel (1982). The
major effects of the part of the flow which advects
temperature and moisture will be to cause a local
overturning of 6, surfaces and concomitant moist
convection, as shown by BH, and also, possibly, a
frontogenetical circulation due to the deformation in
the x-z plane. The direct effect of the advection of
equivalent potential temperature upon the instability
may be undeistood by expressing the Lagrangian
growth rate of the hydrostatic disturbance (25) in
terms of the equivalent potential vorticity, defined as

g.=(fk+ V Xv)-Vind,, (29)

where 6, is the equivalent potential temperature, v the
velocity vector, and k the unit vertical vector. If both
the environment and the tube are saturated, then the
buoyancy frequency N, which appears in (25), is the
saturated frequency N,. As shown by Durran and
Klemp (1982), this may be expressed as

I

i)
Nw2= _—1083
ET,0z ™

where T',, and T'; are the moist and dry adiabatic lapse
rates, respectively, and we have neglected small terms
which depend on the total water content. It may also
be shown that the thermal wind relation, to the same
degree of approximation, takes the form

FI1G. 4. Schematic geometry of a slantwise updraft. L, is the length along
the draft, while d is its width. The draft has slope tand, and the horizontal

distance across the draft is L.
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FIG. 5. Estimated mass circulation resulting from moist symmetric instability. The dashed
lines show position of base-state 6, surfaces, and the shading denotes the region in which these
surfaces are being overturned by the circulations. By Eq. (31), the Lagrangian growth rate will

increase in this region.

m 0
‘ft')z=g£——ln0e.

T, dx 30)

With these two expressions and (29), the 'Lagrangian
growth rate (25) may be written

-1
o2 = _fq((a lnﬂe) ‘
0z

(31)

Thus, as noted by BH, the equivalent potential vor-
ticity must be negative for conditional symmetric in-
stability in a convectively stable atmosphere.! Here
we find that the Lagrangian growth rate increases as
the lapse rate of 6, decreases; when the latter becomes
very small the hydrostatic approximation breaks
down. As noted by Hoskins (1974), the conservation
of g.in the absence of radiation, dissipation and trans-
fer of heat from the surface implies that these non-
conservative processes are necessary to restore an ini-
tially unstable atmosphere to stability, unless large-
scale downward motion renders the flow unsaturated.

Several precautions must be taken in the applica-

! BH derive expressions using the wet bulb potential temperature
8., rather than the equivalent potential temperature. Following the
methods of Durran and Klemp (1982), we find that the square of
the moist buoyancy frequency and /7, may be expressed as vertical
and horizontal derivatives of Iné,,, multiplied by the coefficient

rmm( L_ﬂ)
) \' * R

where T',(8,,) is the moist adiabatic lapse rate evaluated at p = 1000
mb and T = 4,,, and we have again neglected small effects which
depend on the total water content. These expressions differ some-
what from those stated by BH, but it can be shown that the La-
grangian growth rate takes the same simple form as their linear
growth rate expression

4

9 Inow)“‘

2 _ __ haflerunind .4
4 fa oz

’

where ¢, is defined as in (29), but with 8,, replacing 6,.

tion of (31). Since we have assumed saturation in
deriving (31), the growth rate thus obtajned should
be thought of as applying to parcel instability in an
atmosphere which is just saturated but contains no
liquid water. If, on the other hand, the environment
of the slantwise ascending motion is unsaturated,
then a positive o2 as expressed by (31) should be taken
as a necessary but not sufficient condition for insta-
bility. '

" Another problem which occurs in assessing the sta-
bility of an entire layer which is lifted to saturation
is related to geostrophic adjustment. After a baro-
clinic layer reaches saturation, ageostrophic motions
must occur in order to bring the layer from an un-
saturated state of thermal wind balance to the satu-
rated balance described by (30). Such motions must
occur in baroclinic flows brought bodily to saturation,
whether or not they are unstable to slantwise con-
vection, and may be at least as strong as those re-
sulting from conditional symmetric instability of the
layer variety. This renders suspect the assumption of
a steady basic state used in describing the instability.
This problem does not occur in assessing the stability
of isolated masses, rather than entire layers, as they
are brought to saturation.

It is evident in Fig. 5 that the mass convergence into
the slantwise ascending updraft will generally be as-
sociated with a forced convergence of M and 0 surfaces
near the lower boundary. Qualitatively, one would ex-
pect a local frontogenetical circulation to develop as
a consequence of this process. The upward motion
associated with this circulation will likely be greatest
on the warm-air side of the initial slantwise convection.
Further investigation of this process is considered be-
yond the scope of this paper.

3. Discussion

We have examined two cases of moist symmetric
instability; the first involves non-hydrostatic motion
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in a perfectly moist adiabatic flow while the second
is concerned with hydrostatic flow in a fluid which
is stable to purely vertical reversible displacements.
In fact, the first case is unlikely to be important in
the atmosphere, since the hydrostatic approximation
will be valid even when the buoyancy frequency is
quite small. The hydrostatic approximation applies
when the slope of S surfaces is small, the condition
for which in a saturated atmosphere may be expressed
as

Nn* > f1),

where N,, is the saturated buoyancy frequency,

(32)

~g Ab,

Nit=-—"2—",

” 0,,0 Az

Here A8, is the difference between the virtual poten-

tial temperature of a parcel and that of its environ-

ment, when the parcel is lifted a small distance Az.

Using this expression, Eq. (32) can be written as
000 '
— flav],
g .

where Av is a typical change of velocity through a
layer. Taking liberal estimates of Av = 40 m s™! and
0,0 = 300 K, we have

A, = 0.12 K.

Ady >

From this we may conclude that the hydrostatic as-
sumption is applicable very close to the condition of
neutral stability. The transition from strongly sloped
hydrostatic motions resulting from moist symmetric
instability to vertical moist convection will in general
be accompanied by only a very brief period of non-
hydrostatic symmetric instability.

We next examine the range of conditions under
which hydrostatic moist symmetric instability is pos-
sible. It is shown in a companion paper (Emanuel,
1983) that in the special case of constant absolute
vorticity 7 the maximum gravitational and centrifugal
potential energy that can be achieved by lifting a tube
slantwise in a geostrophic flow is given by

2
PE = if sz + 3L~ 0 (33)
000 i 2 n

where points 1 and 2 represent the bottom and top of
the layer in question, A6, is the difference between the
tube virtual potential temperature and that of its en-
vironment, and v, and v, are the tube-parallel velocity
components at the top and bottom of the layer. The
first term in (33) is just the area between the applicable
adiabat and the environmental temperature on a te-
phigram, while the second represents the centrifugal
potential of a ring of fluid lifted through the layer. A
positive value of PE in (33) indicates a potential for
instability.

EMANUEL 2375
From (33) it can be seen that a velocity difference
Av across a layer is energetically equivalent to a parcel
virtual temperature surplus of
LB f
Aby; 2 eH 7 (Av),
where H is the depth of the layer. If Av is 40 m s™!
across 5 km, the above is equivalent to about 5°C of
lifted parcel virtual temperature surplus. This rein-
forces the suggestion of BH and others that moist
symmetric instability should be important in strongly
baroclinic moist flows. Examples of potential energy
calculations using a more general version of (33) in
flows which were observed to contain rainbands are
given in Emanuel (1983).

It is interesting to estimate the effects which moist
symmetric instability will have on the large-scale flow.
The non-hydrostatic calculations suggest that a small
amount of heat is transported upward and baroclin-
ically toward the colder air, in good agreement with
the linear results of Stone (1972) for dry symmetric
instability. Far more certain and quantitatively im-
portant are the transports of angular momentum.
Since the ascending tubes, until they reach their equi-
librium position, always have a smaller amount of
angular momentum than their environment, the
flow transports angular momentum downward and
baroclinically toward the warmer air. The magnitude
of the angular momentum transport will of course
depend on the mass flux of the ascending flow but
the results obtained here suggest that the correlation
of angular momentum deficit and flow in the cross-
shear direction will be large. The moist symmetric
instability, like its dry counterpart, will deplete the
momentum of the upper-level jet and deposit it
at lower altitudes and baroclinically toward the
warmer air.

It should be stressed that the mesoscale horizontal
extent and small vertical depth of circulations re-
sulting from moist symmetric instability will not be
resolved in most large-scale numerical models; such
models. may therefore lack an important means by
which momentum is transported vertically and hor-
izontally in the atmosphere. Further research on this
subject may prove the desirability of incorporating
a parameterization of mesoscale transports of mo-
mentum by moist symmetric instability.

4. Summary

Simple Lagrangian equations have been developed
which describe the slantwise ascent of two-dimen-
sional moist air tubes in convectively stable baroclinic
flows, under the assumptions that pressure pertur- -
bations are negligible (small Froude number) and
mixing is absent. Analytic solutions of these equa-
tions for idealized conditions show that the tubes as-
cend along slantwise paths in such a way that their
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buoyancy is nearly zero, although oscillations about
this path are possible. In the absence of mixing, the
~ ascending flow reaches equilibrium at the intersection
of its surfaces of zero buoyancy and zero angular
momentum surplus, and at that intersection reaches
maximum velocities which, unless the instability is
marginal, are comparable to the velocity of the en-
vironmental flow in the tube-parallel direction. These
large velocities, together with the implied large aspect
ratio of the motion, suggest that turbulent mixing will
be important in flows resulting from conditional sym-
metric instability unless the instability is marginal.
In contrast to the assumption of laminar flow, the
small Froude number approximation appears to be
better justified in this problem than in the case of
classical moist convection.

‘We emphasize the mesoscale character of flow re-
sulting from moist symmetric instability. Shear-par-
allel rainbands resulting from moist symmetric ascent
will have horizontal scales ranging from the same
order as the vertical scale, if the flow is close to being
moist adiabatic, to as much as two orders of mag-
nitude greater than the vertical scale under conditions
of extreme shear. In either case, the small slope of the
updraft suggests that water loading will not be a sig-
nificant inhibition to convection, since precipitation
will always fall out of the updraft.

Consideration of the effects of mass convergence

into moist slantwise updrafts leads to the expectation

that the flow will become more intense on the warm

air side of the initial updraft, since the horizontal
inflow near the lower boundary will lead to a steep-
ening of surfaces of constant equivalent potential
temperature there. Upright moist convection may
result if this process continues long enough, as dem-
onstrated by the numerical simulations of BH. A
frontogenetical effect is also implied.

Moist symmetric instability, where it is active, may
transport significant amounts of momentum. While

the angular momentum flux is always down-gradient,

the horizontal component of flux appears to be up
-the horizontal gradient. Large-scale numerical mod-
els which do not resolve moist symmetric instability
may therefore lack an important means by which
momentum is redistributed in the moist baroclinic
atmosphere.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 40

It is emphasized that the theory presented here
applies to the stability of finite reversible slantwise
displacements of a two-dimensional air parcel, or
“tube,” in an arbitrary baroclinic flow, rather than
to infinitesimal displacements in a saturated atmo-
sphere, the stability of which has been previously in-
vestigated. In this sense, the present theory is simply
an extension of the parcel theory of moist convection
which accounts for the centrifugal as well as the grav-
itational potential energy of a displaced ring of fluid.
Unlike the linear theory, the Lagrangian method
yields an estimate of the nonlinear characteristics of
slantwise convection, including its amplitude. In a
companion paper (Emanuel, 1983) we show how the
susceptibility of the moist baroclinic atmosphere to
local slantwise displacements may be routinely as-
sessed using standard atmosphere soundings.
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