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ABSTRACT

A general framework has been developed to study the predictability of space~time averages of mesoscale
rainfall in the tropics. A comparative ratio between the natural variability of the rainfall process and the prediction
error is used to define the predictability range. The predictability of the spatial distribution of precipitation is
quantified by the cross correlation between the control and the perturbed rainfall fields. An upper limit of
prediction error, called normalized variability, has been derived as a function of space-time averaging. Irrespective
of the type and amplitude of perturbations, a space-time averaging set of 25 km?-15 min (or larger time
averaging) is found to be necessary to limit the error growth up to or below the prescribed large-scale mean

rainfall.

1. Introduction

The lack of periodicity in atmospheric dynamics and
the nonlinear coupling of its variables places an upper
bound on our ability to forecast. Nonlinear equations,
even with low dimensionality, exhibit sensitive depen-
dence on initial conditions (SIC). Therefore, long-term
predictability of the atmosphere is limited even though
its deterministic description may be possible. Addi-
tional complexities arise in the atmosphere because of
the interactions of physical-dynamical processes op-
erating on a variety of space and time scales.

There is a wide spectrum of variation in range of
predictability with scales. On one end, high-frequency
fluctuations in point rainfall makes it highly unpre-
dictable, whereas on the other end, daily average pre-
cipitation integrated over the tropics is almost equal
to the surface evaporation and hence “perfectly” pre-
dictable. In hydrologic applications, for example, flash-
flood forecasting, we are interested in predicting the
spatial and temporal variability of storm rainfall at a
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scale somewhere in between these two extremes. The
spatial scales of interest in hydrology range from few
to several thousand square kilometers, whereas the
temporal scales of prediction vary between a few min-
utes to several hours. This paper will investigate the
range of predictability of rainfall at these scales. It is
based on two fundamental hypotheses:

1) the physical laws that govern the behavior of at-
mosphere are well represented by an atmospheric
model where the governing equations are deterministic
and known; and

2) inherent instability of the atmosphere places an
upper bound on the predictability of hydrometeoro-
logical quantities, and this bound can be approximated
by estimating the divergence of “identical-twin” so-
lutions of the model that differ slightly in their initial-
izations.

Taken at face value, the first hypothesis implies that
given the “exact” present state of the atmosphere (in
the model), we can forecast the future states perfectly.
The governing equations, however, that describe the
physical-dynamic processes underlying precipitation
form a highly nonlinear deterministic system. Even in
some of the apparently simple mathematical models,
nonlinearity coupled with sensitive dependence on ini-
tial conditions produces outputs indistinguishable, by
standard techniques, from a stochastic process.
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The lack of complete periodicity in the atmosphere’s
behavior supports the second hypothesis; however, it
does not reveal the range at which the prediction error
becomes unacceptably large. To study the range of
predictability, we will concentrate on the divergence
of “identical-twin” solutions of governing equations
that differ only in their initializations. The rate at which
twin solutions of the model diverge shows how rapidly
initial small errors will grow to make the prediction
useless. It is likely that point rainfall will diverge very
quickly, rendering a predictability range of a few min-
utes at the most, whereas domain-averaged rainfall will
most probably converge for the twin solutions, imply-
ing a perfect predictability. A logical question to ask
at this point is: How does the range of predictability
vary as a function of temporal and spatial averaging?
The answer to such a question will aid significantly in
using physically based mesoscale models for extensive
predictive applications like flood predictions. Opera-
tionally, to name a few, these results can be used to
design the optimal set of space-time averaging for re-
mote sensors and to determine the resolution of flood-
forecasting models for a given predictability range.

Since Lorenz’ (1965) pioneering work on predict-
ability of the atmosphere with a low-order baroclinic
model, several error-growth studies have been per-
formed with ever increasing complex models of the
atmosphere (for example, Charney et al. 1966; Leith
1965; Lorenz 1982; Mintz 1964; Smagorinsky 1969;
Shukla 1981). All these experiments attempted to
characterize the error growth of extended-range fore-
casts for large-scale atmospheric flows. Based on some
of these large-scale predictability studies and homo-
geneous turbulence theory, pessimistic conclusions
were drawn concerning mesoscale predictability ( Ten-
nekes 1978). Several counterarguments were also made
to suggest that prediction of some important mesoscale
phenomena is far more encouraging than the preceding
conclusions indicate (Anthes et al. 1985).

In recent years, considerable effort has been put into
the development and testing of mesoscale models. Yet
compared to predictability of large-scale systems, very
little attention has been directed toward quantifying
predictability of mesoscale weather systems. Limited-
area predictability studies are not a straightforward ex-
tension of the global-scale studies. The mesoscale
weather differs from synoptic-planetary systems in
many ways; for example, in their time scales, inter-
mittencies, and triggering mechanisms. In addition,
added complexity is introduced due to the presence of
lateral boundary conditions (LBC) in mesoscale mod-
els. Errors introduced by the LBC, which are not pres-
ent in global models, contribute additional errors to
the predictions (Baumhefner and Perkey 1982). On
the other hand, in certain synoptic situations, LBC may
supply useful information and may help in increasing
the predictability range.

JOURNAL OF APPLIED METEOROLOGY

VOLUME 32

Anthes et al. (1985) utilized a three-dimensicnal,
primitive equation model to estimate the predictatility
of meso-a-scale (200-2000 km) motions in a regime
characterized by organized moist convection. They
looked at error growth of instantaneous values of sev-
eral variables but never looked at rainfall. Surprisingly,
this study showed little or no growth of rms errors due
to the error in specifying initial conditions over the
time period of 0~72 h. In contrast, the simulations were
more sensitive to the specification of lateral boundary
conditions. The reasons for the differences in predlict-
ability behavior between large-scale models and this
study are not clear. Anthes et al. (1985) hypothesized
that nearly identical LBC imply that larger horizontal
scales information is also nearly identical and this fea-
ture, coupled with fixed model fields such as topojra-
phy, almost exclusively determine the smaller—s@:ale
behavior. Consequently, perturbations in initial con-
ditions have almost no effect on the growth of 1ms
error. In addition, Anthes et al. (1985) introduced their
perturbation in such a way that the slower modes are
affected most. This scale-selective perturbation pro-
cedure may also be responsible for the increased pre-
dictability. !

A different analysis by Errico and Baumhefaer
(1987), using a high-resolution limited-area moclel,
indicated that coupling of several model propertie; is
responsible for restricted error growth. Typically, a
major portion of the initial perturbation is either clis-
sipated by numerical filters or diabatic processes or is
propagated out of the forecast domain due to its pro-
jection onto gravity waves. At small scales, parame-
terized horizontal diffusion is found to be very effective
at dissipating errors. In contrast with errors, the fie{ds
themselves do not weaken in time, which implies;, a
substantial forcing of small scales by large scales.

Of course, these conclusions are not likely to be ap-
plicable to other mesoscales (e.g., meso-3 scales ranging
from 20 to 200 km or meso-vy scales ranging from 2
to 20 km) where various instabilities may influence a
significant portion of the model domain. At hydrologic
scales (which may be compared to the meso-8 scile
but without implying that the hydrologic scales are in-
dependent of either meso-a or meso-+y scales), we ex-
pect considerably more divergence of solutions due 'to
the variation in initial conditions. It is worthwhile to
mention that no systematic predictability studies have
been reported at these scales to date.

2. Design of the experiment

One major impediment to testing any hypothesis
regarding predictability is the quality and quantity of
observational data. This scarcity of data is particularly
true at spatial scales that are comparable to the hydro-
logic prediction scales themselves. As previously i .-
plied, our analysis will be based on a limited-area, three-
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dimensional numerical cloud model developed by
Clark (1977, 1979) and his collaborators (e.g., Clark
and Hall 1979; Clark and Farley 1984; Smolarkiewicz
and Clark 1986). Of course, results and conclusions
based on simulated data are valid only to the extent
that the assumptions and approximations of the cloud
model are valid.

Our approach in creating the model atmosphere for
predictability studies will be somewhat different from
most of the previous simulation experiments with lim-
ited-area models. Conventionally, cumulus convection
simulations start with a large reservoir of convective
available potential energy and are not forced. Conse-
quently, the results based on these type of experiments
have a strong dependence on the choice of the initial
sounding. An attempt is made to eliminate this depen-
dence by creating a model atmosphere that is in radia-
tive-convective equilibrium. Our predictability exper-
iments will be performed after this equilibrium state
has been reached.

As a mechanism to create the equilibrium situation,
we will assume that surface heat flux is in balance with
radiative cooling of the troposphere. This way no net
heat will be put into the model domain. Since our sim-
ulation time (in the range of several hours) will be
much smaller than the time scale over which large-
scale forcing changes, it is expected that this represen-
tation of uniform forcing will be adequate.

Our region of interest is the tropics. The model do-
main is 3600 km? (60 km X 60 km) and 20 km deep,
with a horizontal resolution of 2 km and a vertical
resolution of 250 m. Cyclic boundary conditions are
used in the horizontal, while the top and bottom
boundaries are fixed; however, to avoid the reflection
of gravity waves from the model top, a 5-km-deep
Rayleigh friction absorber is employed at the top. A
more detailed description of the experiment may be
found elsewhere (Islam 1991).

Horizontally homogeneous heat and moisture fluxes
are added to the atmosphere from the surface and at
the same time radiative cooling is applied up to the
tropopause. The balance between the surface fluxes and
radiative cooling is imposed to guarantee that the
model atmosphere evolves into an equilibrium state.
A simple perturbation of sensible heat flux Qg is used
to create the initial field of motion. The intensity of
the perturbation is increased progressively to reach a
maximum amplitude of 10% of Qg at 30 min. The
perturbation is terminated at 30 min, and thereafter
the surface heat fluxes remain horizontally homoge-
neous. A horizontally homogeneous Bowen ratio (B
= Qs/ Q) of 0.50 is assumed, where Q; is the latent
heat flux. This type of partitioning between sensible
and latent heat fluxes is reasonable for large wetlands.
Therefore, given the sensible heat flux at a point, we
can easily get the latent heat flux. The changes in tem-
perature T and water vapor mixing ratio g, of a layer
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of thickness Az just above the lower surface of the
model are

oT Qs

— = , 2.1
ot Cplz h
aqv QL

==t 2
at LAz’ (22)

where C,, p, and L, are the specific heat, density of
air, and latent heat of vaporization, respectively. Sur-
face heat fluxes of 166 W m™2 (Qs) and 332 W m™2
(Qr) produce a rate of temperature change of
1.95°C h™!, and a rate of change in mixing ratio of
1.56 g kg7' h~! at the surface grid points (if Az
= 250 m). To compensate for the surface heat flux, we
need to provide a uniform radiative cooling at the rate
of 6°C day™! uniformly from the surface up to the
tropopause (13 km). The chosen values of surface
fluxes and radiative cooling are somewhat larger than
the typically observed ones; they are chosen to enhance
the approach to equilibrium. Nevertheless, large-scale
mean ascent in the tropics at times may produce an
adiabatic cooling several times larger than the typical
radiative cooling of 2°C day~!. Since the current model
formulation cannot explicitly account for the large-
scale ascent, an attempt will be made to incorporate
this effect by choosing a larger value for the radiative
cooling.

Our interest lies in creating a model atmosphere that
is in a state of statistical equilibrium; hence, the initial
sounding should not be important in deciding the final
outcome of the predictability experiment. The mean
soundings for the West Indies area (Jordan 1958) are
used for this purpose.

3. Predictability experiment -

To study the errors in prediction, our focus will be
on the divergence of a control run and a perturbed run,
with the perturbation occurring after equilibrium state
has been reached. What follows is the definition of the
equilibrium state and the details of the perturbation.

a. Definition of equilibrium

Since the route to the equilibrium state is controlled
by the chosen balance of surface heating and radiative
cooling, it is reasonable to expect that, in equilibrium,
a moving average of rainfall intensity should be close
to the surface evaporation rate. However, it is evident
from the time history of domain-averaged rainfall in-
tensity (Fig. 1a) that the individual fluctuations of the
rainfall intensity around the evaporation rate can be
large. Therefore, an objective way to define the equi-
librium state needs to be found. We will assume that
the rainfall has reached equilibrium if the second-order
statistics of domain-average rainfall stabilize with time.
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Figure 1b shows the moving average mean and stan-
dard deviation with a 10-h averaging window. As can
be seen, the domain-averaged rainfall starts out low
and gradually increases and fluctuates around the large-
scale evaporative flux, the moving average mean shows
an increasing trend up to 50 h and then remains es-
sentially constant, and the standard deviation stabilizes
at about 40 h. Based on these observations, it is argued
that the rainfall process has reached an equilibrium
state after 50 h. This state, in principle, is independent
of the initial sounding.

Now look at the space~time evolution of three other
variables, namely, potential temperature, relative hu-
midity, and cloud water, to ensure that the model at-
mosphere has indeed reached equilibrium. Figure Ic
shows the horizontally averaged potential temperature
field along with the associated root-mean-square (rms)
deviation at 20, 40, 50, and 60 h. The average profile
at 20 h is slightly warmer than that at 40 h. The profiles
at 50 and 60 h are virtually indistinguishable. Another
point to notice is that the rms deviation decreases up
to the tropopause as the equilibrium condition is ap-
proached. Relatively higher rms deviation above the
tropopause may result due to the presence of 5-km-
deep Rayleigh friction absorber at the top and possibly
due to the excited internal waves. Figure 1d shows the
horizontally averaged relative humidity profile and the
associated rms deviation. From 40 h onward, the pro-
files do not seem to change with time. Although these
are instantaneous values, they clearly show that the
model has reached equilibrium after 50 h. A curious
feature to note is the presence of nearly saturated layer
between 8 and 14 km. This high-tropospheric relative
humidity suggests that the entire layer is saturated and
filled with cloud. Figure le shows three-dimensional
views of the cloud-water field exceeding 0.50 gm kg™!
at 20, 40, 50, and 60 h. The cloud-water field at 20 h
looks realistic; however, as time progresses, the layer
between 8 and 14 km keeps building up cloud-water

JOURNAL OF APPLIED METEOROLOGY

VoLuMe 32

Movfnq Average (10 Hour Window) Statistics
: 1 — T T

0.60F
E
0.50 E
0.40 ;— ——  Meon
N E S e St. Deviation
3 E
2 £
N 0.30F
£ E
E E
E
0.20F
o.10F )
3 .
0.00E__ = 1 SR I [ ) 1 R
1] 20 40 60 80 100

1. (a) Domain-average surface rainfall intensity. (b) Moving-average statistics for the domain average surface rainfall intensity.

\
content. This may be an artifact of the Kessler warm-
rain parameterization. In the parameterization, for the
autoconversion of cloud water to rainwater to occur,
the cloud water should exceed a certain threshold. That
threshold is taken to be 0.50 gm kg™*. In addition,
there is a rate of conversion that is used as 1073 s,
As the simulation time increases, more and more cload
water gets deposited at these levels essentially due to
the Kessler scheme having an effective bypass filter >f-
fect. This deck of cloud should not have any significant
effect on the dynamics of our simulations, however,
because of the specified radiative cooling. If an inter-
active radiative scheme was used, this could lead td a
runaway solution. :

It seems that starting our predictabilijty studies fro
this equilibrium may prove illuminating in at least two
ways. First, this construction of equilibrium mode] state
is physically and thermodynamically close to the o»-
served atmosphere (Xu and Emanuel 1989; Betts
1982); hence, the model is more likely to mimic the
interaction of real cumulus clouds with the real at-
mosphere and consequently will be able to produce
physically meaningful results. Second, predictability
experiments with this type of model state have never
been pursued and may- yield a very different predici-
ability range. ‘

j

b. Introduction of perturbations

Following the above definition, the potential tem-
perature field is perturbed well within the equilibriura
regime at 60 h. The amplitude of the perturbation is
chosen to be uniformly distributed within the intervel
—0.25 to 0.25 K. To eliminate any spatial bias, this
form of zero mean perturbation is introduced at all
the horizontal and vertical nodes. It should be noted
here that the amplitude of the perturbations is within
the instrumental accuracy of temperature measure-
ment in the atmosphere. The control and perturbecl
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FIG. 1c. Horizontally average potential temperature profiles with associated root-mean-square deviation at 20, 40, 50, and 60 h.

experiments are then run for 20 h (i.e., from 60 to 80
h). Comparisons of these two simulations will yield

the range of predictability.

Figure 2a shows the time history of domain-averaged
rainfall for both the runs. Although these are domain-

averaged quantities, the temporal fluctuations of rain-
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FIG. 1d. Similar to Fig. Ic but for relative humidity.

fall intensity are large. Figures 2b,c show the spatial
distribution of surface rainfall intensity for both the
control and the perturbed run at selected times. Al-
though the simulations are performed at 10-s time

steps, these plots show rainfall intensity averaged over
15 min. The simulations satisfactorily mimic the ob-
served spatial pattern of convective rainfall in both the
cases. For the first hour, the two solutions are almosit
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error; however, as the prediction time increases, more

indistinguishable from each other. However, graduaily  diction error. For the first hour, there is virtually no
and more spatial disparity appears.

they drift apart and become totally uncorrelated. Fig-
ures 2d,e show the spatial structure of the absolute pre-
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PREDICTABILITY EXPERIMENT: DOMAIN AVERAGED RAINFALL
— T T

Centrol

- Perturbed

Absolute Error

Prediction Time, Hour

F1G. 2a. Domain-average surface rainfall intensity for the control
and the perturbed simulations along with the absolute prediction
error.

4. Measures of predictability time

For hydrometeorological applications, knowledge
about both temporal and spatial structure of rainfall is
of importance. Therefore, a suitable predictability
measure should include temporal variability as well as
spatial nonhomogeneity. For large-scale atmospheric
predictability studies, usually the doubling time of
“small” initial errors is taken as a measure of predict-
ability range. To use this measure, several assumptions
have to be invoked to quantify the initial error as small;
in addition, this is a spatially averaged measure and
does not give any information about the spatial aspects
of predictability.

Warner and Keyser (1983) looked at several char-
acteristic features of mesoscale predictability and pro-
posed a useful definition that states:

“Given a perfectly predictable large scale atmo-
spheric structure, a measure of mesoscale predictability
is the time required for a specified error in the meso-
scale structure of one or more variables to cause the
prediction of a specific quantity to be sufficiently in
error so that it has essentially zero utility.”

This definition measures predictability in terms of a
time scale, but it does not account for the skill em-
bodied by a prediction prior to the time when it had
zero utility. Also, the rather vaguely used term “zero
utility” needs a rigorous definition. On the other hand,
this definition clearly recognizes the predictability im-
plications of scale interactions. In our proposed mea-
sure of predictability time, this definition will be used
as a basis. However, the term “‘zero utility” will be
temporally quantified by comparing the prediction er-
ror with the perfectly known large-scale mean rainfall
and spatially by choosing a level of correlation between
the control and the perturbed field.
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The use of a comparative difference between the
natural variability of the rainfall process and the pre-
diction error as a measure of predictability in time is
proposed. This measure explicitly recognizes the fact
that there is an inherent variability in the rainfall pro-
cess. In space, the cross correlation between the control
and perturbed rainfall field at an instant will be used.
Then a time history of cross correlation will yield a
predictability range for a chosen level of correlation.

a. Temporal measure

First the loss of information is quantified as a func-
tion of time elapsed since the perturbation. This will
be a measure of predictability in time. Define the spa-
tially averaged prediction error E™(t) as
Ne N,

1/2
NNyE,,Z (Cr(t) — P! (t)]} ,

Em"(t) = {
(4.1)

where C77/(¢) and P’} (t) are the control (or observed )
and perturbed ramfall process at a spatial location (l

) for a specific level of temporal and spatial averaging,
m and n. Parameters N, and N, are the number of giid
points in x and y directions, respectively; these will
change with the level of spatial average ». For example,
for n = 2 km, we have N, = N, = 30; whereas for n
= 10 km, we only have N, = N, = 6. For now, the
focus will be on spatial averaging in terms of square
boxes of side #; an extension to rectangular or other
geometric shapes is rather straightforward.

As a measure of natural variability of the process,
the standard deviation of the control rainfall ¢7” will
be used as a function of space~time averaging:

Ny Ny Ny / !

1/2
mn ~\2 “)
[N N Nt kzl 12:1 jzl (Cl e C) ] ’ (4")

mn _
O =

where subscript k denotes time and AV, is the total nurn-
ber of time steps. The rainfall-process statistics are es-
timated using a 50-h period (between 50 and 100 h)
from the onset of the equilibrium regime. A 10-s time
step is used for the simulations, which implies that
16 200 000 space-time pairs are given to estimate tte
process statistics. Notice that the mean C is not affected
by the averaging operator. In the limit, for sufficiently
large space-time averages, C should approach the largé-
scale evaporative flux. In our case, the difference in
total rainfall (defined as the 20-h cumulative rainfall
for the entire domain ) for the control and the perturbed
run is less than 5%.

Figures 3a-d show the ratio of spatially averaged
prediction error and the process standard deviation as
a function of the prediction time for a variety of space--
time averages. In all the cases, the normalized predic-
tion error grows with time and eventually approaches
and fluctuates about V2.
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FIG. 2. (b) Spatial distribution of rainfall intensity for the control and the perturbed experiments at 15 min and 1 h. (¢) Similar to (b)
but for 19 and 20 h. (d) Spatial distribution of the absolute prediction error for selected times. (e) Similar to (d).

This hrmtmg value can be derived. Assume that the
mean C = P, and the standard deviations, ¢
= ¢, of the control and the perturbed process are
the same. Since both processes are controlled by the
same dynamics and physics, this assumption is exactly
true for ¢ - oo and large spatial domain. For notational
simplicity, omit m, n, and ¢ from (4.1), although keep
in mind that the subsequent analysis is valid for large
t. In addition, if we assume that the spatial average
corresponds to the ensemble average, then we can write

E?={(C - P)?) (4.3)

where () refers to the ensemble average. Now if (4.3)
is expanded and the control and the perturbed process
are treated as independent, which is a fair assumption
for large ¢, it can easily be shown that

E
E? =262 ie., == V2. (4.4)

It is interesting to notice that the spatially averaged
error attains the same asymptotic limit for a variety of
space-time averages.
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FIG. 3. (a) Spatially averaged prediction error for 15-min averages. (b) Similar to (a) but for 30-min averages. (c) Similar to (a)
but for 1-h averages. (d) Similar to (a) but for 2-h averages. !

Given the perfect knowledge of large-scale atmo-
spheric forcing, a useful measure of predictability range
is the time required for the prediction error to reach a
certain fraction of the known large-scale mean rainfall,
that is,

7™ E™(t) < aC, (4.5)
where T is the predictability time for a specific level
of space-time smoothing, and « is an arbitrary constant
that will quantify how stringent one is in estimating
predictability time. For example, for & = 0.10, we de-
mand a tenfold higher accuracy in prediction compared
with & = 1.0. This may be thought as a “risk factor”
associated with a particular decision when these results
will be used.

Given the limiting result of (4.4), an upper limit of
prediction error can be specified as a function of space—
time averaging without even performing the pertur-
bation experiment. If normalized variability, defined
as 1502"" ] C, is plotted in an m-n space (Fig. 4), then,
given a desired level of accuracy of prediction, we can
infer the required size of the space-time averaging box.

In other words, normalized variability refers to tae
percentage departure of the saturation prediction error
from the known large-scale mean rainfall. A normal-
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FIG. 4. Normalized variability as a function.
of space-time-averaging.
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ized variability of zero implies perfect predictability,
which is the limiting result for large 7 and n. As the
size of the space-time averaging box increases, the dif-
ference between the large-scale prescribed mean and
the predicted mean decreases and eventually becomes
zero. The averaging set m and », corresponding to the
normalized variability of unity, will make a prediction
error as large as the large-scale mean. The prediction
time when such an error is incurred will depend on
the size of m and »n. The steep slopes of the contours
to the left of the unit contour imply that in this region
temporal averaging as large as 4 h will not have much
effect in increasing the predictability time. On the other
hand, the averaging sets falling to the right will never
incur an error as large as the known mean,

Figures 5a-d show the temporal evolution of the
prediction error normalized by the large-scale mean as
a function of space~time averaging for a given ampli-
tude of perturbation. As expected, with increasing m
and n, the prediction error decreases. These figures can
be used to exactly determine 7" for a given value of
m, n, and a.

b. Spatial measure

To quantify the predictability of the spatial distri-
bution of precipitation, the correlation between the
control and the perturbed rainfall field p7;"(¢), will be
used as a function of prediction time:

oo (1) = (1) Z Z [C7(n) - C()]

i=1 j=1

X [P7(1) — P(2)], (4.6)
wh;re
o(t) = {N:N,La " (Do (D]},
_ l Nx Ny
C(1) NN Z 2 (1),
N 172
'""(t)‘{ ; § [Ci(2) — C—’(t)]} , and

" is defined similarly to o7,
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Following the arguments and assumptions of the
previous section and omitting m, and n, and ¢ for no-
tational simplicity, we can write

<(C C)(P P))

o 4.7
Pep = o.0, (4.7)
Expanding (4.7) gives
(CPy — CP
Pep = .

G.0p

For large ¢, if C and P are assumed to be independent,
then p,, becomes zero. This time of zero correlation
may serve as a criterion for estimating predictability
time. This may not be a very useful criterion because
zero correlation essentially means that the control and
the perturbed field are two realizations of a random
process. A more flexible and meaningful criterion for
estimating predictability time may be defined as

T .

pep (1) = 8, (4.8)
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where # is an arbitrary constant between 0 and 1.0.
Although the correlation may take a negative value,
negative correlation does not have any useful meaning
in the context of predictability time. Figures 6a—d show
the spatial correlation as a function of prediction time
for several levels of space-time smoothing. Given these
figures and a chosen level of correlation 8, 77" can be
estimated graphically. An interesting feature to notice
in all these figures is that for different combinations i>f
m and n, the correlation appears to be positive for
almost all the time. The implication is that at a given
time, on the average, the number of spatial locations
overestlmatmg {or underestimating ) the mean is equ.11
in both the control and the perturbed run.

5. Concluding remarks

Compared with large-scale atmospheric systems, th:
efforts to quantify predictability of mesoscale systems
have been very limited. In this paper, we have devel-
oped a general framework to study the predictability
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of space-time averages for mesoscale rainfall in the
tropics. In the following two subsections, we will sum-
marize and highlight the important conclusions.

a. Equilibrium experiment

We have created an equilibrium model atmosphere
by requiring a balance between the surface heat fluxes
and radiative cooling. For the given forcing, it takes
about 50 h to reach a radiative-convective equilibrium.
At equilibrium, the variability of the domain- (3600-
km?) average rainfall is small, suggesting that the pre-
dictability will increase with space-time averaging. In
addition, 3600 km? is small compared to the space
scale of cyclones. This may imply that the convection
will be in equilibrium with cyclonic-scale forcing. On
the other hand, since the time required to reach equi-
librium is of the order of cyclonic time scale, it is dif-
ficult to delineate the possible feedback between con-
vective and cyclonic systems.

b. Predictability of space-time averages

In designing the predictability measures, we have
emphasized both spatial and temporal variability of
rainfall. We use a comparative difference between the
natural variability of the rainfall process and the pre-
diction error as a measure of predictability in time. In
space, a chosen level of cross correlation between the
control and the perturbed rainfall field defines the pre-
dictability range.

For a given forcing, an upper limit of prediction
error, called normalized variability, has been derived
as a function of space-time averaging. This limit is
independent of the amplitude and spatial distribution
of perturbations. The averaging space-time set corre-
sponding to the normalized variability of unity implies
that we will make a prediction error as large as the
large-scale mean. The prediction time when such an
error is incurred will depend on the averaging space-
time set and the type of perturbation. Irrespective of
the amplitude of perturbation, we find that a space-
time averaging set of 25 km?-15 min (or larger time
averaging) is necessary to limit the growth of prediction
error up to or below the large-scale mean.

Normalized predictability measures, both in space
and time, have been developed for a set of perturbation
amplitudes and shown in graphical form. The level of
perturbations studied is comparable to instrumental
errors in temperature measurements in the atmosphere.
Hence, the perturbation experiments are illustrative of
the propagation of errors in specifying initial condi-
tions. The predictability measures and the given figures
can be used to determine the predictability range for
a given set of space-time averages with an associated
risk factor and an amplitude of perturbation.
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It should be emphasized that the conclusions are
based on only one perturbation experiment and a re-
strictive nodal configuration. To extend the results, it
is important to look at a reasonable ensemble of per-
turbation experiments, to simulate more realistic ini-
tial-error characteristics, and to quantify the sensitiv-
ities to surface forcing. In this context, several inter-
esting questions may be posed for future research. The
equilibrium state attained in the simulations is a func-
tion of the forcing. It is not clear how long it will take
to reach the equilibrium condition with different forc-
ing. Do we reach the same statistical equilibrium for
different sets of forcing or do we get multiple equilibria
for different forcing? Will the predictability change with
spatially variable heat fluxes and radiative cooling?
How do we modify Kessler parameterizations to get
realistic cloud fields for longer periods of simulations?
How does the result change if we use ice physics instead
of warm-rain parameterizations? Can we put a confi-
dence interval around our predictability estimates by
choosing a family of perturbations?
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