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ABSTRACT

Observations of strong convective lines in middle latitudes indicate a close association of the lines
with the presence of vertical shear of the large-scale horizontal wind. Under the premise that this shear
is necessary to the maintenance of mesoscale circulations accompanying the lines, it is found that the
susceptibility of the large-scale momentum, temperature and moisture fields to such circulations is re-
lated to the inertial stability of the flow. Part I contains a description of a variational solution of the
linear equations governing two-dimensional perturbations in a bounded, fully viscous, adiabatic and
Boussinesq rotating fluid with constant vertical and horizontal shears. The principal finding of this analy-
sis is that the horizontal length scale of the most unstable normal mode is determined primarily by the
depth of the unstable domain and the slope of isentropic surfaces rather than by the diffusive properties
of the fluid. The effects of moisture and the conditions under which inertial circulations are likely to
develop in the atmosphere are examined in Part II and compared with observations of mesoscale con-

vective systems.

I. Introduction

An important development in the atmospheric
sciences over the last two decades has been the
realization that convective systems, as distinct from
the individual convective element, depend crucially
on the presence of much larger circulations which
supply moisture to the convection and may also de-
stabilize the convective environment. This con-
ceptual development originated in the CISK theory
of tropical cyclone development, as first presented
by Charney ‘and Eliassen (1964), and uitimately led
to the first successful parameterizations of cumulus
convection (e.g., Arakawa and Shubert, 1974). The
understanding and prediction of midlatitude con-
vective systems such as squall lines have not greatly
benefitted from these ideas, however. Attempts to
relate the development of severe, persistent con-
vective systems to the dynamics of the large scale
(as resolved, for example, by the current North
American rawinsonde network) have not been en-
tirely successful (e.g., Fritsch et al., 1976), and the
nature of the supportive circulations and their in-
teraction with cumuli remain enigmatic.

Observations of intense, persistent convective
lines in middle latitudes invariably indicate the
presence of conditional instability and strong
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vertical shear of the large-scale horizontal wind.
Emphasis has been placed on the role of the latter
in organizing motion on the convective scale. In-
dependent of this idea, it is the premise here that
the intensity and persistence of organized con-
vection are determined by the susceptibility of the
synoptic-scale temperature, moisture and mo-
mentum fields to mesoscale circulations, with di-
mensions greater than those typical of pure con-
vection but less than those resolvable by most
operational observation networks. We assert that
while conditional instability is necessary for any
convection, its presence may not be sufficient to
permit the development of mesoscale circulations
which supply moisture to the convection. On the
other hand, certain large-scale distributions of
momentum and density may be unstable to meso-
scale perturbations in a convectively unstable at-
mosphere. The degree of this mesoscale insta-
bility, together with the amount of buoyant energy
available to the cumuli, determine the intensity of
the convection. The conditional instability allows
the convection to occur in the first place; the
synoptic-scale environment facilitates the develop-
ment of mesoscale circulations which in turn sup-
port the convection by providing moisture con-
vergence and by destabilizing the local convective
environment. '

In order to assess the stability of the large-scale
flow to mesoscale disturbances, it is necessary to
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take into account several parameters normally pe-
glected on the cumulus scale, such as the absolute
vorticity of the flow. Analytic examination of meso-
scale dynamics ‘is hampered by the intractability
of making simplifying assumptions on the basis of
scale; the motion fields are too small to be con-
sidered inviscid and quasi-geostrophic, but too large
to neglect rotation or horizontal gradients in the
environment. Fortunately, many extratropical con-
vective systems are organized in lines and hence
the mesoscale flow, in these cases, may be con-
sidered to be two dimensional. In particular, pre-
cold frontal squall lines comprise an interesting
class of convective systems on which to test the
aforementioned premise as their organization on the
mesoscale is apparently simple, and as they have
received much attention in observational studies of
intense convection. A primary finding of these
studies is that the lines occur in an environment
characterized by strong vertical shear and are more
or less aligned with the shear.

The stability of baroclinic shear flow in a stably-
stratified rotating fluid to two-dimensional perturba-
tions whose axes are aligned with the shear is the
subject of Part I. By examining in detail the structure
of inertial circulations in viscous shear flow, as well
as the conditions under which they might occur, we
hope to ascertain whether such motions resemble
those observed in association with squall lines.

2. Review of inertial stability fheory

Two-dimensional circulations with axes parallel to
the shear vector in rotating fluids may occur if the
flow is inertially unstable, i.e., if there exists an
unstable balance of pressure gradient and centrifugal
(Coriolis) forces within the fluid. The first investiga-
tion of the physical mechanism of inertial instability
was carried out by Rayleigh (1916), who derived the
stability criterion for a homogeneous, incompress-
ible and inviscid circular vortex flow. Later, Sol-
berg (1933) extended Rayleigh’s analysis to include
the effect of baroclinity. The fundamental con-
clusion of these investigations is that circular vortex
flow is stable to axisymmetric disturbances as long
as the square of the angular momentum of the flow
increases with radius along isentropic surfaces,
otherwise it is unstable. Due to the symmetry of
the disturbances in the circular vortex, this form of
disturbance has also been called symmetric in-
stability. ‘

For the special case of inviscid, Boussinesq,
baroclinic flow on an f plane with constant vertical

shears and no horizontal shear and bounded above -

and below by rigid surfaces, Stone (1966) finds that
inertial circulations begin as overturning motions
which are very nearly in the plane of isentropic

surfaces. The largest linear growth rates are associ--
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ated with rolls of vanishing horizontal scale in the
direction transverse to the shear, although the de-
pendence of the growth rate on this wavelength is
not great for small wavelengths. The linear theory
for this special case indicates that instability sets
in when the Richardson number (Ri) falls below
unity. The expressions derived by Stone for the
growth rate (w;) and the largest wavelength (L .)
for which the flow is unstable are

1 1/2
p = ——1 ’
et (m )
UH iy,

Lyax =2

where f is the Coriolis parameter, U, the ,constant
shear value and H the depth of the fluid. The
Richardson number is defined

The vanishing length scale of the most rapidly
growing linear mode in the bounded inviscid sys-
tem suggests that the length scale of inertial circula-
tions in real baroclinic fluids is determined by the
diffusive properties of the fluid. The addition of
viscosity to the linear symmetric stability problem
greatly complicates its solution as the resulting
equations are of much higher order. Mclntyre (1970)
found that the inertial stability equations are singular
with respect to the diffusion parameters; i.e., the
nature of the solutions of the viscous system in the
limit of vanishing diffusion differs from the solution
of the inviscid system. McIntyre studied symmetric
instability in an unbounded viscous baroclinic fluid
and found that monotonically growing disturbances
begin when
(1 + o)

and oscillatory instability may occur when
- 2
M Ri< (1 + 30) ,
f 8a(1 + o)

where o is the Prandtl number, and % is the ab-
solute vorticity about a vertical axis. When (%/f) Ri
is greater than unity, the most rapidly growing
mode is one which maximizes the destabilizing in-
fluence of diffusion while minimizing viscous dis-
sipation. This length scale is O@'?f -4y ,~14). If,
however, the Richardson number is classically sub-
critical, another mode with infinite length scale is
permitted in the unbounded system. The growth
rates of both modes are O(f).

The diffusive singularity appears.in the de-

D Ri<
f



DECEMBER 1979

pendence of the above expressions for the critical
Richardson number on the Prandtl number, which
can remain finite in the limit of vanishing dif-
fusion. Noting that the critical Ri for monotonic
instability has a minimum for ¢ = 1, it is apparent
that unequal diffusion of heat and momentum. is
destabilizing.

Walton (1975) extended McIntyre’s analysis to in-
clude the effects of rigid boundaries and small
nonlinearity. Using a perturbation expansion in
Ty "8, where

2174
TOEfH

’
V2

Walton finds that diffusion in the presence of
boundaries lowers the critical Richardson number
for both the monotonic and oscillatory instabilities,
and that the wavelength of the most rapidly grow-
ing mode is a weak function of the diffusion coef-
ficients when the latter are asymptotically small.
The large-scale inviscid mode present in the un-
bounded system does not appear when boundaries
are present since flow parallel to the boundaries
is always stable.

The fully viscous, linear, non-hydrostatic inertial
stability problem has been solved exactly by Kuo
(1954) for the special case of a neutrally stratified
fluid confined above and below by rigid, free-slip
boundaries. Solutions were obtained for hori-
zontally unbounded disturbances as well as for
motions confined by two vertical free-slip walls.
The possibility of oscillatory instability is not con-
sidered, although it is shown that amplifying oscil-
latory motions are not possible when the Prandtl
number is unity. Kuo finds that the flow becomes
unstable when a normalized vertical shear param-
eter exceeds a critical value dependent on the Taylor
number (T,). The unstable motions begin as over-
turning cells which slope upward over the denser
fluid, and with wavelengths on the order of the depth
of the fluid.

Yanai and Tokioka (1969) performed a numerical
experiment in order to simulate meridional motions
in an axially symmetric vortex. In this experiment,
the nonlinear inviscid equations of motion are inte-
grated in a domain bounded above and below by
rigid boundaries. The results are in accord with the
linear theory but the horizontal wavelength is limited
by the numerical grid size. An integration is also
performed in which the region of instability is re-
stricted to a small area within the domain; in this
case the unstable motions are very much confined
within the unstable region.

As inertial instability draws kinetic energy from
the large-scale vertical and/or horizontal shear, it
must transport momentum downgradient, as has
been shown by Stone (1972). In so doing, the in-
viscid instability has very little first-order effect on
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the available potential energy. Walton (1975) and
Stone (1972) find, however, that the destruction of
the large-scale vertical shear produces a secondary,
thermally direct circulation which transports both
heat and zonal momentum poleward. Presumably,
there exists a conversion from zonal available po-
tential to zonal kinetic energy in this secondary
circulation.

The investigations of inertial stability conducted
thus far (a summary of which is presented in Table 1)
have dealt for the most part with inviscid fluids
and flows with asymptotically small viscosity. The
singularity of the viscous equations demands, in this
case, that the diffusive effects be formulated com-
pletely so ds to resolve the structure of inertial
circulations. In Section 3, we proceed to derive
solutions of the perturbation equations for a fully
viscous baroclinic flow with constant stratification
and shear.

3. The linear perturbation eguations

We here examine the stability of a rotating, fully
viscous, Boussinesq baroclinic fluid to two-dimen-
sional displacements transverse to the shear. We
take as an equilibrium flow a steady zonal current
on an f plane. The zonal flow is characterized
by constant vertical and lateral shears, i.e.,

U=Ugz+ Uy,

in which U, and U, are constant values of the
vertical and horizontal shears, respectively. Simi-
larly, the equilibrium density distribution is taken to
be of the form

0 Inp 0 Inp
= rlpy+ npz
dy 0z

where the horizontal density gradient satisfies the
condition of thermal wind balance

Inp

b

- dInp
fUZ=g s
dy

where f is the Coriolis parameter and g the accelera-
tion of gravity. The square of the Brunt-Viisila
frequency is defined for a Boussinesq fluid as

A = dInp

—g = constant.
Using these relations, the density distribution may

be written )
glnp =fU,y — N%z.

The stability of this balanced initial state is ex-
plored by determining the time dependence of small
perturbations superposed on the equilibrium flow.
The perturbations are taken to be two-dimensional,
with axes along the -shear (no zonal variation).
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TABLE 1. Summary of inertial stability investigations.

skewed with respect to the shear.
Denoting the perturbations by primes, the lin-
earized adiabatic Boussinesq equations are

Wavelength
Linear or Criterion for of maximum
nonlinear ) Equilibrium flow Boundaries instability growth
Rayleigh L Homogeneous, incompressible None oM? <0 -
(1916) and inviscid circular vortex or .
! M = rlw)
Solberg L Inviscid, Boussinesq circular None aM? <0
(1933) vortex with constant vertical ( ar ) . -
shear and static stability
Kuo (1954) L Viscous nonhydrostatic zonal Rigid free-slip U,
flow with constant shear and boundaries at bottom B (1 + o) > F(T,) O(H)
neutral stratification and top
Stone L Inviscid hydrostatic Boussinesq  Rigid top and bottom 1 - 1 U, <0 0
(1966) zonal flow with constant Ri f
shear and static stability
‘McIntyre L Viscous hydrostatic Boussinesq None Ri < (1+ o) oo
(1969) ’ zonal flow with constant 1 4o or
: shear and static stability O 2f 4y, ~11%)
Yanai and NL Inviscid zonal flow Rigid free-slip at top and —_ —
Tokioka (numerical bottom
(1969) integration)
Walton NL Viscous hydrostatic Boussinesq Rigid at top and bottom 40 . L6 e
(1975) (weakly) zonal flow with constant 1+ o) Ri <F(Ty O, "U.S7'H)
shear and static stability '
Stone (1966) has shown that such perturbations have , 0y . 0y
higher growth rates than those with axes slightly v=- Bz w. = —8y :

Using this notation, the three momentum equations
and the heat equation may be combined to yield a
single eighth-order equation for the streamfunction:

o . _ _ .
9 VVZ)M' toU, + w0, =fo's, (1) 9 T
<6t Y f (i - sz)(-— — VV2) (a —+ —a—)dl
. ot ot A oyr a9z®
(- ww ) = - =L @ :
—_ -y = = —_——— — . 8 - 6 2
or po 0y - —(- - vV"’.)(fUz LAY a_w)
o a dyoz e
| ( a W)w' L, 3) 5 e &
al— — vV = —_——— =g, _ :
ot . po 9z po - (—'— - KV2)<fU2 id + fn ——lp) . (6)
5 o N? ot dyoz 0z%
((—97 - KVz)p— + P S - - w’ =0, (4 Here isdefined as the absolute vorticity of the flow:
0 -
6'0, awl _ . 77 Ef - U!I‘ ’
_67 + o0z 0. ) If an exponential time dependence is assumed

The coefficients of momentum and heat diffusion
are v and «, respectively, and « is a tag set equal
to zero or unity depending on whether the flow is
considered hydrostatic or not (this will depend on
the shear and the static stability, as discussed later).

The perturbation flow in the y-z plane may be

"and boundary conditions on the streamfunction
are specified, then the relationship among the sta-
. bility parameters, which appear as constant coef-
ficients of (6), are determined as characteristic
values of the latter. The time dependence may enter
as both growth (or decay) and as oscillation.
* We will approach the problem here by repre-

described in terms of a streamfunction by virtue of senting the streamfunction as a Fourier series in

the form of the continuity equation (5). Such a var-
iable is here defined so that

y and ¢, and then finding that component wave
which first exhibits positive growth as the base flow
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is altered toward an unstable condition. Assuming
that the time dependence is of the form exp(wt),
we will determine the nature of those solutions
characterizing the marginal state in which Re(w)
= 0. The motions may set in as ‘‘overstability’’ if
Im(w) # 0 when Re(w) = 0.

In order to condense the analysis, the following
simplified cases will be examined:

Case (i): Disturbances are hydrostatic (o = 0) and
horizontal diffusion is neglected (V2 = §%/9z2).

Case (ii): Disturbances are nonhydrostatic (o = 1),
the fluid is neutrally stratified (N? = 0) and hori-
zontal diffusion'is included (V? = §%3y? + 8%0z%).

The case (ii) corresponds exactly to the problem
considered by Kuo (1954) and is included here pri-
marily as a check on the methods of solution. It
should be noted that when the fluid is nonhydro-
static, the orientation of the rotation axis with re-
spect to the gravitational vector becomes an im-
portant consideration. In the present analysis, we
take the rotation axis to lie along the gravitational
vector as in Kuo (1954). In Appendix C the effects
of including the meridional component of rotation
are considered.? :

The degree to which both the hydrostatic as-
sumption and the neglect of horizontal diffusion are
valid depends on the ratio of the vertical to hori-
zontal length scales, which ratio, according to the
scaling arguments to be presented shortly, depends
on the slope of the potential isotherms fU,/N2. If
this slope is small, then vertical accelerations and
horizontal diffusion may be neglected.

a. Boundary conditions

The boundaries at the top and bottom of the
domain are specified as rigid (w = 0) and perfectly
conducting (p’ = 0). Since we wish to specify a con-
stant vertical shear in the base state, we must also
require the boundaries to be no-slip and dif-
ferentially rotating, with the bottom boundary sta-
tionary and the top boundary rotating at the local
tangential velocity U,H. However, we will impose
stress-free boundary conditions on the perturbation
velocities as a matter of mathematical convenience,
though one should keep in mind that this is physi--
cally artificial. These stress-free conditions may be
written

(&p o ou’
dy ~oz2’ 8z’

Additionally, the perturbation equations for case (i)

p') = 0 at boundaries.

2 The author is grateful to a reviewer for pointing out the
need to consider the direction of the rotation axis when the
flow is nonhydrostatic.
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are solved for no-slip boundaries:

oy oy

_—, = u, p') = 0 at boundaries.
& oz
The perturbations are assumed to be periodic in
the direction transverse to the shear.

b. Overstable oscillations

Mclntyre (1970) and Walton (1975) consider the
possibility of over-stable oscillations in an un-
bounded fluid and in a bounded flow with asymp-
totically small diffusion, respectively. For the un-
bounded case, (6) may be solved for the normal
modes using the substitution

¥ = |¥| expli(rz + ly) + wt]

with r and / real and w complex. With this substi-
tution, (6) reduces to a cubic equation in w which
admits three real or one real and two complex con-
jugate roots. In the case of asymptotically small
diffusion (or small wavenumber in the unbounded
case), it is found that oscillatory instability may
set in when
2
Ri < (1 + 30)

8a(1 + o)’

with the oscillation frequency at the critical Richard-
son number given by ’

wopr_ U=

1+ 301 +0)

Oscillatory instability is not possible when o = 1,
and occurs for critical Richardson numbers which,
for a given Prandtl number, are always smaller than
those corresponding to the non-oscillatory mode of
instability.

Analogous criteria may be obtained in case (ii)
for nonhydrostatic oscillatory instability in a fluid
with neutral stratification. In the limiting case of
asymptotically small diffusion, the critical shear and
oscillation frequency may be found as functions of
the Prandtl number and the ratio of horizontal to
vertical wavenumbers, i.e.,

/ U, _ 20
7+ 30)=lr’
1-o

T A+ 300 + 0P

The lowest critical value of the shear occurs as
I/r - —, in which case the oscillation frequency
vanishes. In any event, oscillatory instability is only
possible in this case when o < 1. For non-oscil- -
latory instability, the critical shear is

Uz = _—_—.}_—
7 A+ o)=lr)
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Comparing the critical shears of both forms of in-
stability, for a given ratio (//r), it seems that the
oscillatory mode is a distinct possibility in neutrally
stratified flow when o < 1. As most geophysical
flows are nearly hydrostatic, however, the linear
theory indicates that osc1llatory instability is un-
likely. In the following treatment, therefore, we will
restrict our attention to the non-oscillatory form of
instability.

c. Scaling

The time-independent form of (6) may be twice
integrated (see Appendix A) to yield a sixth-order
- equation for the streamfunction. For case (i), this
will be

o6 . 2
—v?K _Glf: =fU,(v + k) oy
z

\ . ™Y

!
+ VN2 g + f'T) ﬁ . (7)
For case (ii), (6) reduces to
' 8% azw

2 23,1 — +

VRV = fO0 4 10 o+ kf
By an appropriate choice of scaling, the number of
independent parameters involved in either (7) or (8)
may be reduced to two. Rather than choose a vis-
cous length scale, however, we take the vertical
scale to be H undér the premise that for reasonable
values of the. diffusive parameters, the disturbances
will seek length scales determined by the geometry
of the domain. It will be seen later that this premise
is eminently justified. We then choose a scale for
the horizontal dimension y such that the number
of independent parameters in each of (7) and (8)
is reduced to two. The resulting equations, together
with their scaling, are as follows:

Case (i)

324/ e

ayz a 2
No

2% > 2H, y*—>yH — 2% 9
Y ST o) ®

]

ST
Z

' Case (ii)

2 2
N L
dyoz 0z?

z* > zH, y*— yH.

=T(V®)3Y = xu

The asterisks denote dimensional variables. The
nondimensional parameters that appear in (9) and
(10) are

_f
n f*H*

(a modified inverse Taylor number),
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_f1ra+ o)?
i = ? _Ii-i p s
Xii = l{z 1+ o),
Ui
where
o =vlk (Prandtl number),
Ri = N¥U,? (Richardson number).

The parameter x in each case is a measure of the
inertial instability of the flow, with instability fa-
vored by small static stability, large shear and small
absolute vorticity. Instability is also favored by
Prandtl numbers far from unity in case (i), and
greater than unity in case (ii). T is a measure of
the damping due to viscosity.

Though the perturbation equations will not be
solved for the linear growth rate of the instabilities,
it is important to know something about the order
of magnitude of the growth rate. In the inviscid
formulation, the inertial growth rate is O(f), as
shown, for example, by Stone (1966). When dif-
fusion is added, a diffusive time scale must be
considered as well, particularly in the case where
diffusion makes the instability possible. As Mc-
Intyre (1970) has shown, however, both the inviscid
and diffusive modes of instability have growth rates
of O(f*2U,'?); physically the instability is funda-
mentally inertial in character, since the diffusion,
when it is destabilizing, only acts to break the con-
straints of heat and/or angular momentum conserva-
tion following the parcel motions. The modes of in-
stability considered here are extensions of the modes
Mclntyre considered in the unbounded formulation
to the case where boundaries are considered, and
may thus be taken to have growth rates of the
same order.

The solution of (9) and (10) with boundary con-
ditions specified, will yield the critical values of
the parameters x in each case, as functions of the
viscous parameter T. Solutions of these charac-
teristic value equations will also yield eigenfunc-
tions s characterizing the onset of unstable motions.

d. Asymptotic behavior

As (9) and (10) are singular in 'the small param-
eter T, we cannot be sure that their eigenvalues and
eigenfunctions approach the inviscid limit as T is
made very small. Walton (1975) is able to show that
for small T, the horizontal and vertical scales both
vary as TY6 and that the solutions do approach the
inviscid limit uniformly. Taking T = 0 in (9) and
applying the rigid boundary conditions ¢ = 0 at
z = 0, 1, the normal mode solution for case (i) is
obtained immediately. The streamfunction  satisfies

¢=mm@-n§ﬁsmmm,n=hzyn,un
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while x; must satisfy the eigenvalue equation

Xt
4 X TE

s

where ! is the horizontal wavenumber. The smallest
value of x; is 4 and occurs as /| — « corresponding
to the results of Walton (1975). The disturbances
slope upward over the denser fluid with a dimen-
sionless slope of ¥4 when y; = 4. Dimensionally,
the slope of the disturbances is

oz fsz<

g N?
This slope is greater than or less than that of the
isentropic surfaces depending on whether the
Prandtl number is less than or greater than unity.
The minimum slope is half that of the isentropic
surfaces when o — =; as the dimensional slope be-
comes large the hydrostatic assumption will no
longer be valid. :
The inviscid solution for case (ii) with the same
boundary conditions is

1+o
20')'

¢ = sin(nsmz) sinl(Vaxuz — y),

while the eigenvalue y;; satisfies
Xii = 27T/l = L,

where L is the nondimensional wavelength. The
minimum value of x; is zero corresponding to a
vanishing wavelength and a vertical disturbance
orientation.

The primary conclusions to be drawn on the basis
of the solution in the limit of no viscosity are that

instability sets in when the product of the absolute '

vorticity and the Richardson number is of order
unity (provided that the Prandtl number does not
differ greatly from unity), and that the resulting
disturbances consist of overturning motions along
isentropic surfaces, with axes along the shear.

As the viscous parameter T becomes asymp-
totically large, we would expect that the critical
value of the shear (x) will also become large; a
simple inspection of (9) and (10) would suggest that
the term 8%/dz%> may be neglected in either case.
These equations then become, respectively,

T 8 o? &
x: 0z dydz  dy?
T %Y
— — (V2 = T — ).
Xi( ¢ Aayaz ( )

As both of the above contain only a single char-
acteristic value T/x, x will be a linear function of T
when the latter is large. This asymptotic behavior is
indeed evident in the complete solutions.
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4. Solution of the characteristic value equaticns by
variational methods? ’

A general technique for solving linear eigenvalue
problems, first developed by Pellew and Southwell
(1940) and used extensively by Chandrasekhar
(1961), will be applied to the solution of (10), with
free-slip boundary conditions, and (9) with both free-
slip and no-slip conditions. The reader is referred
to Chandrasekhar’s text for a discussion of the
physical implications of the variational theorems.

a. Free-slip boundaries

As (9) is sixth-order in z, three boundary condi-
tions are required at each of the upper and lower
boundaries (a fourth condition has been used in
reducing (6) to sixth-order). Two of these are

oy = #Ploz2 =0, at z=0,1,

and follow directly from the statement of the
boundary conditions. If (2) is differentiated once
in z, it is evident that 3*)/dz* must also vanish at
the boundaries, since du/0z = dp/8z = Oatz = 0, 1.
The conditions applied to the solution of (9) there-
fore will be ‘

at z =0, 1. (12)

Suppose that y is specified in (9). Then associated
with a function ; satisfying this equation will be a
characteristic value T;, i.e.,

Sy Y Yy
a5 N ayer X ot

If the above is multiplied through by a different
solution y; (corresponding to a characteristic value
T;) and the resulting equation is integrated be-
tween the boundaries in z and across one wave-
length in y, then

%y,
8z

T,

T L 6Glbj
T dyd
Jojo v 0z° ya
1 L a2
co[ [0 2
0o Jo Z
1 (L 2.1 1 rL 20
—xJ J t/fialb’ dydz—J J ‘lfia%dydz,
0o Jo dy? 0 Jo 0z*

where L is the dimensionless horizontal wavelength.
(Henceforth, the domain of integration is assumed
to be in the y-z plane.)

Applying the conditions (12) and a sequence of in-

? The reader uninterested in the methods of solution presented
herein may proceed without loss of continuity to Section 5.
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tegrations by parts, the preceding becomes
1 (L g3 . P

1, f J o 8
0

o 0z% az3
1
0

L azdfj
L dyoz

i

' 0w oy
RIS
L[E oY Oy
B f 0 f 0 -67 E‘
Using integration by parts, it may also be Shown that

sl

. (13)

0%
* dyoz
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1 L 32!11,- 1 rL 62"11_
L Jo Gyaz - Jo Jo ayaz '
With this symmetry, a switch in indices i and j in
(13) indicates that

J' Lo%y; 0%,

i
L o 0z°

where §;; is the Kronecker delta. The functions
0%,;/0z® are therefore orthogonal and (13) may be
written in the form

(%)2 j Ll LL (%f‘)z I

U Y

8%

ijs

(14)

i :

| (5

=.-I—2,

It may now be shown that the function  which satisfies the boundary conditions (12) and mdximizes the
value of T as expressed by (14) is also a solution of the partial differential equation (9). The proof of this
theorem is given ini Appendix B. By parallel arguments, one can show that for the non-hydrostatic case,

(10) is satisfied if the value T expressed as

L
[

oty
0ydz

G

1
Xii [
0
1 (L
L]

is maximized with respect to a function s which also
satisfies the boundary conditions (12). i

In order to utilize the variational approach in the
solution of (9) and (10), it is necessary to find func-
tions ¢ which maximize T in (14) for case (i) and
(15) for case (ii). The orthogonality of the functions
 suggests that -we may expand ¢ in a series of
orthogonal functions, and for simplicity, we may re-
quire that each individual term in the expansion
satisfies the conditions (12). In this case, the com-
plete Fourier series

¢ = Y sinnwz(a, sinly + b, cosly)  (16)
n=1

meets these requirements.

For a specified horizontal wavenumber [, the
Fourier coefficients a, and b, may be regarded as
the variational parameters and the problem becomes
one of. finding those sets of g, and b, which max-
imize T in (14) or (15). By finding the characteristic

27*

N dnmmr
—Xi 2 ( 2
m? —

. 1 27?
)ﬁnmam + (*2'L7T2n2 +T,Xi +

(G (s

(15)

1 1
)enmbm + (L 42 4 2
n? 2 L 2

T ]

value T for various wavenumbers [ we may find
that wavenumber which is associated with the high-
est value of T; this wavenumber présumably char-
acterizes the onset of instability.

When T is expressed as in (14), i.e., T = I,/I,,
the maximization of T with respect to each of the
Fourier coefficients a, and b, yields the require-
ments that

Oy

oa, da, , n=1,2,3...- (17)
612~T612=.0

ob, ob,

The series (16) is substituted into the integral
relation (14), the integrals are performed, and we
proceed to maximize T with respect to the a,’s and
b,’s using (17). When the series (16) is truncated
to N terms, these operations yield two sets of N
linear algebraic equations:

LﬁGnGT)an =0

., n=1,2,3,...,N. (18)

1
; Lw“nGT)bn —0
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Here €, is defined
0 ifn +m
1 ifn+m

The symmetry of the relations (18) reveals that they
can both be satisfied only if

by = @n(—1)"*1. (19)

Then the relations are identical; either constitutes
a closed set of N linear equations for the N Fourier
coefficients. Such a system will have a solution for
non-zero Fourier coefficients provided that the de-
terminant of the coefficients vanishes. Substituting
(19) into (18), the matrix of coefficients is found to be

even integer

enm

odd integer.

4
Anm = Xi(_l)m m_—:im

€nm
n2

1 272 1
+ (—L7T2n2 + — Xi + — LWGnGT)Snm’ (20)
2 L 2

and we require that
Det|A| = 0.

It may be seen that the parameter T only appears
in the diagonal elements of the matrix A, and if
each row of A is divided through by 2 L#%:°, then
- —T will be an eigenvalue of A. Since A is symmetric,
all eigenvalues will be real and that eigenvalue cor-
responding to the largest positive value of T is taken
to be the root of physical interest.

The same procedure may be used to find the char-
acteristic values and eigenfunctions of (10) for case
(ii). When the Fourier series (16) is truncated to
N terms and used to represent ¢ in (15), and T is
maximized with respect to each of the Fourier co-
efficients a,, and b,,, we obtain two sets of N linear
equations:

N
477Xii 2 ( ;lm 2 )enmbm
m=1 \M” —n
— WBL[n*m?® + T(n?a® + 1#)%}a,.= 0,
N
_47TX1‘1‘ 2 ( 2nm 2 )6nmam
m=1 \M~ —n

— WBLn*m? + T(n?x? + 2%}, = 0.

It is once again evident that b, = a,(—1)**'. If the
Fourier coefficients are nonzero, then the deter-
minant of the matrix of coefficients must vanish. The
coefficient matrix in this case is

dmnm
n 2

Anm = Xii(_l)m+l €nm

m2

3
+ %L{n%’z + T(nzﬂ'2 +-‘-1£7—;2) :}8,,,,,. 21
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FiG. 1. Ratio of the Nth order variational approximation of
the critical shear x; to the approximation of two orders lower for
various values of N. Boundaries are free-slip.

The eigenvalues and eigenvectors of (20) are
found using a standard matrix solver; the two-term
approximation of (20) is also solved by hand as a
check on the numerics. A sufficient number of terms
is taken to determine the eigenvalue T to at least
three significant figures. The entire process is re-
peated for various values of the horizontal wave-
length L to find that mode which first becomes un-
stable as the fluid is destabilized.

The number of terms in (20) needed to determine
the critical value of T (maximized with respect to
L) to three significant figures is found to depend
on the value of T itself, with only three or four
terms needed when T = 10~* increasing to ~10
when T = 1078, As T approaches zero, the structure
of the most unstable mode tends toward the inviscid
result for which the most unstable wavenumber is
infinity. The rapidly oscillatory nature of the nearly
inviscid solutions therefore requires that many terms
of the Fourier series (16) be included in order that
Y is accurately represented.

As an illustration of the convergence of the eigen-
values of (20) as the dimension of the matrix [i.e.,
the number of terms in (16)] is increased, we first
adjust (20) so that y; is the matrix eigenvalue, and
compare the Nth order approximation of x; with the
approximation of two orders lower; this ratio being
a function of T. Fig. 1 shows that the rapidity of
the convergence of the eigenvalue x; for increasing
N increases monotonically with T. We may suppose,
on the basis of Fig. 1, that only two or three
terms of the series (16) need be used to describe
the asymptotic behavior of the streamfunction and
associated eigenvalue y; as T — . When (20) is
truncated to a two by two matrix, the eigenvalues
are easily computed by hand and one finds that

x; — 10950 T as when L =7.5. (22)

Here L has been chosen to minimize the coefficient
of T in (22).

T — oo,
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For case (ii) (neutral stratification), one may pro-
ceed in a similar fashion by solving the matrix (21)
for the eigenvalues and eigenvectors, taking the
matrix dimension N to be sufficiently large to insure
reasonable precision of the eigenvalue. As this prob-
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lem has been solved exactly by Kuo (1954), how-
-ever, we solve for the eigenvalues of (21) to third
order only and compare this solution with the exact
results of Kuo (1954). The third-order determinant
of (21) is easily obtained by hand, with the result

Xit = Sl (23)
48 4\3 5\2 48 ‘
[1+T’(1+—) }+ (_> [9+T’(9+—> }
L? 9 L?
where T = 7*T. ' & op oy
~ The asymptotic solution of (23) for large T is W'@E =x~-1-0) 3),'
Xii —> 2747T as T-—>oo, when L =341, (24) & o oy
where again, that L has been chosen which mini- - T + o) Byoz° + s +T o (26)

mizes the coefficient of T in (24).

Table 2 compares the critical value of x; de-
rived from (23) and minimized with respect to L with
the results of Kuo (1954). Kuo’s formulation of the
problem is identical to that presented here, although
horizontal shear is not considered. The errors in the
third-order approximation of x; range from ~7.5%
when T = 107% to less than 0.1% when T = 10732;
the largest errors again occur for small T as the
spatial variation of the streamfunction becomes
large and exceeds the capacity of the truncated
series (16) to adequately describe its structure.

. The eigenvalues and eigenfunctions of (9) and (10)

associated with free-slip boundaries and obtained
using the variational method will be presented in
Section 5.

b. No-slip boundaries

In deriving a variational method applicable to

- no-slip boundaries, it proves convenient to express

the boundary conditions as constraints on ¢ alone.

For case (i), the steady forms of (1)-(5) may be

cross-differentiated to yield expressions for the sec-

ond derivatives in y of # and 8p/dz. In dimension-
less form, these are

Pu o e
o y ' oyort
+(1— 1+0)(%+T65¢), 25)
: X 0z oz°
L,
Xi Jo Jo \ 0z 27 dy

Here # and Bp/éz have .been nondimensionalized

as follows: (

14
u*=u—U+ o
H_( )

&) &

B 0z
where the asterisks denote the dimensional vari-
ables. Two constants. of integration involved in the
derivation of (25) and (26) have been set equal to
zero to exclude the geostrophic solution

Wy

u

E @7

14

op )
7o X

0z

0,
—0p/oy.

The requirement that 4 and 8p/dz vanish at the
boundaries together with s and 8y/9z is equivalent,
by (25) and (26), to requiring that

The uneven nature of these conditions necessi-
tates the construction of a new variational method.
Rather than proceed with the derivation of such a
method, we will simply state that the function
which maximizes T as expressed by

m o) )|

N

Xi_y %)2
4 3

L 29)
L

(o)

8y 9z°%

Ll
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is a solution of the characteristic value equation (9),
together with the conditions (28). The proof of this
theorem is provided in Appendix B.

In order to utilize the variational relation (29),
we again represent ¢ by a complete series of orthog-
onal functions which satisfies, term by term, the
boundary conditions (28) and is periodic in y. It
proves convenient, in constructing such a series, to
shift the coordinate system so that the boundaries
lie at z = =Y. We then choose, as the orthogonal
functions, the eigenfunctions of the equation

d‘G

= = &G (30)
subject to the conditions
5y
¢=96_d6 _ G 4§ u 1o -1, 01
dz dz* dz?

where the a;'s are eigenvalues of (30).

There are an infinite number of eigenfunctions
satisfying (30) and (31) corresponding to an infinite
set of eigenvalues «; these eigenfunctions may be
divided into the odd and even sets

sinw,z sinh .z
S = T - =
sinu,,/2  sinhw,,/2 32)
_ COSApZ _ coshi,,z
COS\,,,/2 coshh,,/2

where the w,’s and A,,’s are roots of

cothi—coti=0
2 2

tanh—)\—+tan—}—\-=0
2 2

It is readily shown that the functions (32) satisfy
the orthogonality conditions
1/2

1/2
J SmSadz =J CnCodz = Bnms
-1/2 —1/2

1/2
J—1/2
It is now possible to construct a complete orthogonal
series describing ¢ which is arbitrary except that it

meets the boundary conditions (28) and is periodic
iny:

SnCndz = 0.

©

U= 3 (auSnsinly + b,,C,, cosly),
1

m=

(33)

where a,, and b,, are constant coefficients which will
be treated as variational parameters.

The above is substituted into the integral relation
(29) and T is maximized with respect to each of the
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TaBLE 2. Comparison of Kuo’s (1954) solutions for the critical
shear and horizontal wavelength characterizing the onset of
instability in a neutrally stratified flow with those obtained using
a variational method to third order.

Xii Xit L L.

T (Kuo) (Variational) (Kuo) (Variational)
10-¢ 0.603 0.648 0.51 0.52
1073 1.007 1.065 0.80 0.79
10 2.026 2.098 1.29 1.29
1073 6.100 6.146 2.07 2.07
102 32.880 32.907 2.94 2.95

coefficients a,, and b,,. This leads to the two sets
of relations

611 _ T a12 = 0

6am 6am , m = 1, 2, 3 PR N (34)
611 _ T 612 =

Bbm abm

When the series (33) is truncated to M terms, the
extremization of T with respect to each a,, and b,,
results in two sets of M linear equations for the
coefficients. Performing the integrals and the opera-
tions (34), these sets are

M ——
a1l + Tu,HPx + 3 {anlS:'Sx' 11 + Tu,t)
m=1

x (1 + T/-Lm4) + blei[Snle]

X [1+ ¥%T(w,* + )]} =0, (352)
M . e
bal + TNAOEX: + S {bulChCo
m=1
X (1 + TA( + TAw?) + anlSmCo'llx:
X [1 + BT + wa®)]} = 0, (35b)

n=1,2,3...M.

The bracketed quantities are integrals of the prod-
ucts of various derivatives of S, and C,, and are
defined in Table 3.

With T specified, x; may be regarded as an eigen-
value of the matrix of coefficients of a, and b, associ-
ated with (35) after performing the following opera-
tions: we first define a new horizontal wavenumber
as !’ = ly;. Each row of the M equations in sets (35a)
and (35b) are then divided through by I'*(1 + Tu,*)
and [/'*(1 + TA,*) respectively, resulting in the
two sets .
an A O/ SO —

— + E {—‘,_2‘ [Sn,Sm,](l + Tf’*m‘l)
Xi m=1 l
+ % [SnCm’]

[1 + BT (w,t + Ap?)

T | = 0 oo
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TABLE 3. Definitions of the bracketed quantities which appear in (35).

Sunzumz[un cot £y, cot ﬁﬂ}
2 2
ILm4 - I‘«n‘I ’ nEm
uz
S= | e
—ye 0z -0z
mcot%{umcot%ﬁ—ﬂ, n=m
8,\,3)\,,,2[)\,,, tan —Az'—"- — A, tan %ﬁ}
N s n#m K
[CoCT = J”z 8Cn 9Cn _
~yz 0z 0z
>\n )‘n .
?\,, tanT{}\" tanT + 2}-, n=m
EC = 5, Bn - S
-2 9z = At
b ¥ by —— b) Forj > M
24y {—’" [C7C (1 + Tag®) by Forj=M
Xi  me Ul o SO 1+ TGt + Mor®)
=
am ——— [ 1 + VBT(N\,* + up l 1+ Tud
I G B e R g
{ : 1+ TA, (i) Fori > M

n=12,3...M.

The above are now arranged in such a way that the
quantity —1/x; is an eigenvalue of the associated
matrix of coefficients. This matrix will have dimen-
sions 2M x 2M with the first M rows comprised of
the coefficients in (36a), while the second M rows
contain the coefficients of (36b). The coefficients of
the a,’s are placed in the left half and those of the
b,’s in the right half of the matrix. The matrix of
coefficients, A;; for which —1/y; is an eigenvalue is
then defined as follows:

() ForisM
(a) Forj <=M
_ [S¢S']

't

il

Ay [1+ Tuf]

1.000
N/Xn-2

995

.990

Iog'o T

Fi1G. 2. As in Fig. 1 except for no-slip boundaries. Note the
different scaling of the ordinate.

(@ Forj=M ‘
- [SjC"_M] 1 + 1/ZT(Xi-M4 + I‘Lj4)
] 1+ T)\i—M4

Ay

(b) Forj > M
_ [CiuCi-ul i

= =

The largest positive eigenvalue 1/; is found from
the matrix thus defined using the numerical methods
described previously. The value of 1/x; is also
maximized with respect to the wavenumber /’. In
this instance, a manual calculation is only practical -
when M = 1 but, nevertheless, provides a valuable
check of the numerical scheme and computer program.

It is again found that the number of terms neces-
sary to determine y; to three significant figures is
a function of T, but unlike the results for free-slip
boundaries, the rapidity of the convergence is not
a monotonic function of T. Fig. 2 illustrates that the
ratio of the Nth order approximation of y; to that
of two orders lower reaches a maximum at a finite
value of T and that the convergence is generally
faster for the no-slip case, at least when T < 1075,
(Note the different scales of the ordinates in Figs.
1 and 2.) This behavior is related to both the
structural complexity of the streamfunctions (with
complex functions requiring many terms in the series
representation) and the rate of convergence of the
series for various derivatives of the streamfunc-
tion. In reference to the latter, it is apparent that

Ay + Tyt



DECEMBER 1979

the rate of convergence of either of the series will
be smaller for higher derivatives of the streamfunc-
tions. Note that the variational relation (29) ap-
plicable to no-slip boundaries involves five deriva-
tives in z, while the relation (14) for free-slip
boundaries requires only three derivatives. Quali-
tatively, one would expect the convergence to be
faster in the free-slip case for this reason, and
indeed this is the case for large T (T multiples the
highest derivatives). To understand why the reverse
is true for small T, we first note that the most
unstable inviscid mode represented by (11) is such
that the order of magnitude of various derivatives
of ¢ at the boundary satisfies

oY
oz"

One would expect the viscous solutions to satisfy
this relation in the limit of vanishing T. The no-
slip conditions demand that ¢ and its first and
fourth derivatives vanish at the boundaries, while
the free-slip conditions require that  and its second
and fourth derivatives vanish. By (37), one can see
that the no-slip viscous solution approaches the in-
viscid result more rapidly than does the free-slip
solution as T — 0, hence the variational solution
converges more rapidly in the former case for
small T.

As another illustration of the rapidity of the con-
vergence of the variational solution for no-slip
boundaries, Table 4 lists the first five coefficients
a, and b, for T = 1074,

~O0(™) as [—>», at z=0,1. (37)

c. The zonal velocity and temperature perturbations

Having obtained orthogonal series representa-
tions of the streamfunction in case (i) for free-slip
and no-slip boundaries, it is now possible to con-
struct solutions for the zonal velocity and temper-
ature perturbations, the latter of which is propor-
tional to dp/dz in the hydrostatic case. The deter-
mination of # and p directly from (1) and (4) is not
possible, however, as the uniform convergence of
either of the truncated series (16) or (33) is not
guaranteed for all of its derivatives and integrals.
it is therefore necessary to construct elliptic equa-
tions relating the variables # and p to the stream-
function ¢ which must appear in such a form that
its various derivatives and integrals are adequately
represented by the truncated orthogonal series. The
series involved in these equations will converge
most rapidly when its integrals and derivatives
satisfy term by term the boundary conditions on
u and p. For the no-slip case, (25) and (26) meet
these requirements, while for free-slip boundaries,
u and 0p/dz may be determined from

3 2 2, 6
a+ 1/<;)%§=9_‘-”~2‘-'9-‘."— T3y, (38)
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TABLE 4. First five coefficients of the orthogonal series (33)
for no-slip boundaries and T = 10~ Coefficients are normalized
by a,.

n an by,
1 1.0000 1.0912
2 0.0105 —-0.2785
3 0.0029 -0.0123
4 0.0006 -0.0016
5 0.0002 -0.0003
8’p 0 %y 0%
2P 2l eZrZE )
dyo0z? dy? o0z® 0z

where u and p have been normalized as in (27).
Note that the Prandtl number appears explicitly in
the above relations. In the results presented in the
following section, the Prandtl number is set equal to
unity in the calculation of # and p.

5. Results of the stability analysis

The methods described in the preceding section
have been used to derive the characteristic values
and eigenfunctions of (9) and (10) for free-slip and
no-slip boundaries, with the characteristic values y
determined to at least three significant figures in the
range T = 1078, except that for case (ii) a lower
order approximation is intentionally used and the
solutions compared with the exact results of Kuo
(1954). The solutions of (9) and (10) yield the
critical values of the shear parameter y and the
associated streamfunctions characterizing the onset
of non-oscillatory instability, with the horizontal
wavenumber chosen so as to minimize x.

Fig. 3 shows the critical value of x; as a function
of the viscous parameter T for both free-slip and
no-slip boundaries. As one would expect, the critical
value of ; increases monotonically with increasing
T and the relationship becomes linear for large T
as suggested by the asymptotic analysis. The asymp-
totic solutions of Walton (1975), valid when (74T)!/3
< 1, are also depicted; the agreement is quite good
in the region where Walton’s results are valid.

When the diffusion is small, the type of boundary
condition has little influence on the criterion for in-
stability, but it comes as some surprise that when
T is large, the instability sets in at smaller values
of the shear for no-slip boundaries than it does when
the boundaries are free-slip. This paradox is likely
explained by the greater rotational damping of the
instability at free-slip boundaries, which permit large
zonal velocities to build up near the boundaries.
This damping mechanism is also apparent in
Rayleigh convection with rotation; the critical
Rayleigh number in this case is smaller for no-slip
boundaries when the diffusion is small (see, e.g.,
Chandrasekhar, 1961, p. 96). The striking difference
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F16. 3. Critical value of x; as a function of T for both sets of boundary conditions.
Asymptotic results of Walton (1975) for small T, and asymptotic solution (for
large T and free-slip boundary conditions) obtained using a variational method to

second order are denoted by dashed lines.

_ between the zonal velocity structures associated
with free-slip and no-slip boundaries (Fig. 8) sup-
ports this inference.

The relationship between the critical value of
x: and T for case (ii) (neutral stratification) and
free-slip boundaries is illustrated iri Fig. 4. The solu-
tion obtained using a variational method to third
order is presented together with the exact solution
by Kuo (1954). The comparison is quite "good,

especially for large T. These results are applicable -

for flow on an f plane which is perpendicular to
the gravitational vector; in Appendix C we also con-
sider the effect of the component of the rotation
vector which lies in the meridional plane. So long
as one may neglect the variation of thé rotation
vector with latitude (B = 0), the effects of the
meridional component of rotation may be taken into
account simply by redefining the critical shear
parameter and the horizontal scaling; the perturba-
tion equation remains the same. As is shown in
Appendix C, the influence of the meridional com-
ponent of rotation on the characteristics of the in-
stability is very small, even when the flow is
neutrally stratified.

The non-dimensional wavelength L characterizing
the onset of instability in case (i) is shown.as a
function of T in Fig. 5. The value of L is order

unity for T as small as 1078, illustrating the im-
portant result that the proper scaling for the hori-
zontal wavelength of inertial disturbances is not a
viscous one except for extremely small diffusion.
Rather, the wavelength of the disturbance is re-
lated to the depth of the unstable region and the
slope of isentropic surfaces. [The horizontal scale
has been normalized by the ratio of the fluid depth
and the slope of isentropic surfaces in order to
arrive at Eq. (9).] As the viscosity is increased, the
wavelengths approach asymptotic limits of 7.5 and
3.0 for free-slip and no-slip boundaries, respectively.
The greater dissipation at no-slip boundaries ap-
parently discourages large wavelengths.

The small dependence of the disturbance wave-
length on the diffusion is particularly important so
far as geophysical flows are concerned. In the at-
mosphere, the diffusion acting on mesoscale circula-
tions is accomplished primarily by turbulence rather
than molecular motions and, as such, the exact
criteria obtained here are inapplicable. As the hori-
zontal scale of the circulations is largely independent
of the diffusion, however, the scale determined in
this analysis should apply to geophysical circula-
tions as well, so long as the turbulence acts to
transport heat and momentum down gradient.

The horizontal wavelength characterizing the on-
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F1G. 4. Critical value of x; as a function of T (for free-slip boundary conditions) de-
rived using a variational method to third order. The exact solution by Kuo (1954) is indicated

by dashed lines.

set of instability in case (ii) is illustrated, as a
function of T, in Fig. 6; in this case the results
are indistinguishable from the exact solution by Kuo
(1954), at least when T > 1078, It is again evident
that the disturbance rapidly acquires a horizontal
scale on the order of the depth of the fluid as the

viscosity is increased from zero, with L reaching
an asymptotic limit of ~3.41.

Streamfunctions associated with the onset of in-
stability in case (i) are presented in Fig. 7 for free-
slip and no-slip boundaries, each for two values of
T. The horizontal wavelength in each instance is that

i i 1

-8 -7 -6 -5 -4

log,e T

-3 -2 -t

F1G. 5. Nondimensional wavelength L at which instability sets in, as a function of T for
case (i) and both sets of boundary conditions. Asymptotic solutions for small T by Walton

(1975) indicated by dashed line.
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Fi1G6. 6. Nondimensional wavelength L at which instability sets in, as a function
of T for case (ii). The results of Kuo (1954) are identical.

’

which minimizes the critical value of x; for a given
value of T. The sloped dashed line indicates the
orientation of the potential isotherms when o = 1
and the Ekman depth 8 defined by :

5= (2_")1/2 = QiRpTIA
f

is depicted in the lower left portion of the diagrams.

The streamlines take the form of closed vortices
elongated along isentropic surfaces, and substantial
temperature advection.is indicated near the bound-
aries. The slope of the trajectories is very nearly
that of the isentropic surfaces when the boundaries
are free-slip, but appears to be greater than the
isentrope slope for no-slip boundaries, especially
when T is large. The withdrawal of the circulation
outside the boundary layer in the no-slip case is
strongly apparent.

Of special interest are the fields of perturbatlon
zonal velocity (Fig. 8) associated with the stream-
functions depicted in Fig. 7. These have been
computed from (38) in the free-slip case, and (25)
when the boundaries are no-slip; in all cases the
Prandtl number is unity.

The contrasting structures of the zonal velocity
components for the two sets of boundary conditions
are striking. In the free-slip case, the maximum
velocities are found at the boundaries near the point
of intersection of the zero streamline, whereas the
gredtest zonal component occurs in the interior of
the domain when the boundaries are no-slip. It is this
buildup of large vorticities near the free-slip bound-
aries which we believe inhibits vertical motion
through inertial damping and leads to higher critical
shears for free-slip than for no-slip boundaries.

The zonal velocity ‘perturbation is apparently
dominated by Coriolis turning of the meridional
wind in the free-slip case, and by vertical advection
of the base state zonal wind when no-slip boundaries
are present. For both boundary conditions, negative
correlations of # and w, and of ¥ and v are evident.
The actual transport of zonal momentum must be
downshear, since the instability converts zonal to
eddy kinetic energy, but the net meridional flux of
zonal momentum is probably poleward despite the
first-order negative correlation of # and v, since the
positive correlation of the second-order meridional
flow and the base state zonal wind is dominant
in this case, as shown by Walton (1975). In fact, the
fully nonlinear inviscid instabilities, as long as they
remain symmetric, must transport zonal momentum
poleward in order to conserve Ertel potential vor-
ticity, which may be defined for a Bpussinesq
fluid as

= [(V x V) + kf]-V Iné.

For symmetric flow in geostrophic balance,

dlng _ N? 61n0__f0z
_ oz g g
Thus :
N2
qg=n—
g

If the instability acts to destroy the vertical shear,
then if g is conserved the product nN? must also
decrease. The vertical heat fluxes correct to second
order are upward, as shown by Stone (1972), and
hence must act to increase N2. Thus it must be true
that the inviscid instability leads to a decrease in
the absolute vorticity about the vertical axis; in the
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symmetric case this implies a net poleward flux of
zonal momentum. We may conclude that Walton’s
(1975) result that zonal momentum is always con-
vected poleward for small-amplitude nearly inviscid
symmetric instability is valid for the fully nonlinear
motions as well. This result is called into question
for the fully viscous solutions, however, since
potential vorticity is not conserved and, more
especially, as it appears that the eddy vertical heat
flux may well be negative for certain values of 7
and o. This is evident in the solutions for the
perturbation potential temperature (proportional to
dp/9z) derived from (39) in the free-slip case and (26)
when the boundaries are no-slip. These fields are
illustrated in Fig. 9, with the Prandtl number held
at unity. For the range of T shown, a comparison
of the temperature perturbations and streamfunc-
tions reveals a downward eddy heat flux averaged
over the domain, with high temperatures in the re-
gions of descent and low temperatures where the
motion is upward. Stone (1972) and Walton (1975)
have shown that the total vertical transports of
zonal momentum and heat, correct to second-order
in an amplitude expansion, are identical to the eddy
fluxes alone when the domain is meridionally
unbounded, since the second-order circulation
which develops has no vertical component and thus
does not contribute to vertical advection. Hence,
for at least some values of T and o, inertial instability
may lead to downward heat fluxes and lower static
stability. -

The pressure distribution near the boundaries may
be inferred from Fig. 9 together with the symmetry
‘of the circulations. High pressure occurs under the
region of upward motion, with low pressure at the
surface where the air is subsiding. For the values
of T shown 'here, the perturbation pressure and
zonal wind fields are nearly in geostrophic balance.

Finally, it is evident that most of the eddy kinetic
energy is associated with the zonal component of the
perturbation flow, at least when T is not large. In
the results presented here, the maximum value of
the ratio u/v (computed using the dimensional values
of u and v) for free-slip boundaries and Prandtl
number unity is 15 when T = 10~* and 4.8 when
T = 1.6 x 1073, When the boundaries are no-slip,
this ratio is even larger, except near the top of the
boundary layer.

6. Conclusions

Solution of the fully viscous, adiabatic and Bous-
sinesq linear equations governing two-dimensional
perturbations with axes along the vertical shear
vector reveals an inertial instability which occurs
when the Richardson number falls below a critical
value which depends on the absolute vorticity of

the flow and the diffusive properties of the fluid.
\
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The circulations described here set in as nonpropa-
gating overturning motions; the possibility of oscil-
latory instability is not examined as earlier results
of McIntyre (1969) and Walton (1975) indicate that
such an instability-is unlikely.

The principal finding of this analysis is that
inertial circulations are inherently mesoscale in the
sense that viscosity, rotation, horizontal gradients
in the large-scale flow and ageostrophic advection
all contribute to the dynamics of the motion. Vis-
cosity acts in the singular sense that it assures that
the most rapidly growing disturbance possesses a
finite scale which itself is only a weak function
of the dlSSlpatwe properties of the fluid. This hori-
zontal scale is the ratio of the depth of the unstable
domain and the slope of isentropic surfaces. It
seems safe to suppose that the result is applicable
as well to geophysical flows in which the diffusive
processes operate very dnfferently from molecular
diffusion.

The fully viscous inertial circulations are other-
wise similar to the inviscid motions in that they
transport zonal momentum downward and pole-
ward; however, it appears that the vertical heat
fluxes may be downward, depending on the diffusive
properties of the fluid. Apparently, the most un-
stable mode chooses an orientation for which the
motions do relatively little work against friction,
at the expense of doing some work against gravity.
It is possible, therefore, that inertial instability
leads to local static destabilization.

The structure and scale of inertial circulations,
together with the conditions under which they may
occur, suggest a connection between inertial insta-
bility and certain mesoscale circulations in the at-
mosphere. Richardson numbers of order unity, how-
ever, are generally observed in small regions near
the surface and close to jet streams, yet squall-
line circulations extend through most of the tropo-
sphere. One would suspect that the addition of con-
densation alters the criteria for inertial instability
as well as its structure. The effects of moisture
on inertial circulations will be the subject of Part I1.
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APPENDIX A
Reduction of (6) to Sixth Order

The time-independent non-hydrostatic form of (6)
may be written

2 2
-k (VA4 = sz(fUz id + N2 6_1!;)
dyoz dy®
2 2
+ KVZ(fUz s + f7 EL”) .
-~ Oyodz 9z
The above may be twice integrated to yield
O

—kA(V23 = (v + k) fU,

Oy oz

0° 0
+ VNZW + Kﬁ;a—z'f + ¢, (Al

where ¢ is a function whose Laplacian vanishes.
By applying either set of boundary conditions, ¢
may be shown to vanish.

/

1. Free-slip boundaries

First, the perturbation density is eliminated between
(3) and (4) to yield

190
2 P vy
po 0z

KV o

oy

z

3 s
+ U, 2~ + N* =2 . (A2
dy

(Hereafter, the perturbation pressure is normalized
by pq.)

The above is differentiated once in y, while (1) is
differentiated once in z and (2) three times in z.
The result is

92 ) 2 2
v 3P g, OV NS
dyoz dyoz dy?
62
+ k(V2)? —‘f (A3)
2 2
e G g, 0 (A4)
oz 9z? dydz
oty o o
L L L (AS)
9zt  adyoz? 923

By differentiating (2) once in z, it is evident that
0*/dz* = 0 on the free-slip boundaries, and utilizing
the other three boundary conditions, it is evident
that on the boundaries, the above become
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6* _ 9
« 2P _ o, ¥
dydz3 dyoz
9%u _ 8%
yv—=U, at z=0,H.
9z3 oyoz .
8%y % &u
—V — | e—— —
8z  dyozd az® |
Combining the above, we obtain
o° - 8?
-1k e = fU,(v + k) L4 at z=0,H. (A6)
z

By inspecting (A1), it is evident that ¢ must also
vanish at the boundaries. As VZ¢ = 0, the only func-
tion ¢ which satisfies these boundary conditions and
is periodic iny is ¢ = 0.

2. No-slip boundary conditions

- oY op

({;:_:u:_—:

0z 0z

If (1) is differentiated once in z, and the operator
vV*(8/8z) is applied to (2), we have together with (A3),

0 at z=0,H.

2 2
sz a_u = ﬁ _B—lp + J 2 a l” s
0z 0z2 8yoz
0 o2 82
fvV2 R op P2(V2)? k4 ,
0z dyoz 08z2
02 o? . 9? 0?
w2 TPy B ey, T e O
2 ay? dydz dy?
On the no-slip boundaries, the above become
2 Y
oz oz?
d o* &2
PR LAy S SR GV )
0z dyoz3 022
04 : 8%
K L kv(V?)? —-lli
dyaz® ay®

Eliminating « and p from the above, we arrive at
2

(V2 = —fh %—"‘ at z=0,H.
Z

Comparison with (A1) shows that again, ¢ = 0 on
the boundaries and as V2¢ = 0, ¢ must vanish
everywhere.

APPENDIX B
Proof of the Variational Theorems
1. Free-slip boundaries

It may be shown that the maximization of T as
expressed by (14), with respect to a function { which
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satisfies free-slip boundary conditions, yields the
solution of the perturbation equation (9).*

If T is to be maximized in (14), then a small
variation in T with respect to { must satisfy

I
8T = —1-[:511 Sl 312} =0
I I,

2

or
— Tél, = 0. (B1)

From (14),

1 L 3241 62#,

I, =

ot = || [ [x(o0aar * 995
2.—"’-83—"’) —2%56—"’] .

ay  ay oz oz |

Using integration by parts and applying the free-
slip boundary conditions, the above becomes

e
o Jo dyodz ay? 0z2

Similarly, the increment 8/; may be expressed as
66
- j j oV 280
Jo
Finally, the relation (B1) becomes
1 rL 32lll ' 6241 324!
[ g a2
o Jo | dyoz ay 0z

For an arbitrary variation &y that satisfies the
boundary conditions and which makes 8T = 0, the
above relation is satisfied only if the expression in
brackets vanishes. This expression is the original

](2&1:)

812 =

66‘”](28@ - 0.

characteristic value equation (9), which is therefore:

satisfied if T is maximized in (14).

4 For the sake of brevity, the proof will be carried out only for
the hydrostatic case (i); the proof of the variational theorem for
case (ii) is similar.

b )
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2. No-slip boundaries

We here prove that when T, as expressed by (29),
is maximized with respect to a function y which .
satisfies the boundary conditions

that function which maximizes T is a solution of the
characteristic value equation (9). It is shown in
Section 4 that

#Yozs =0 at z=0,1
as well.
In order to 81mp11fy the proof, we here introduce
a function F defined as

F = —(8°p/8yaz).

From the boundary conditions, F must also vanish
at the boundaries. If # and F are normalized by
v/IH7n and v/f7 respectively, the normalized time-
independent forms of (1), (2) and (4) may be written
for the hydrostatic case as

u 9
ou_ow 1 x o (B2)
022 9z dy ’
4
=, 0% (B3)
0z az4
&°F 1 @ &
=T 5X L x 2 (B4)

az2 dy oz ay?

Here (2) has been differentiated once in z to obtain
(B3) and (4) has been differentiated in y to yield (B4).
Takmg one derivative of (B3) and eliminating u be-
tween (B3) and (B2), we ﬁnd that
5.
E = E(E + - X _(9_([/ + T M .
8z - 08z 2 &y a9z°

Now the variational relation (29) may be rewrltten
in terms of F as

LG5

(BS)

1 rL asw 2
J 0 J 0 ( dyoz? )
We now proceed to maximize T in (B6) with respect to » and F(i):

1

2

From (B6),
L oF _oF

2 1
oty = 2 [ 190,58
X Jo Jo Oz 0z

=£ ) (B6)
=T _
(B7)
e
4 gy oy

An integration by parts together with boundary conditions on F and i yields

0%*F
0z?

2 1
X Jo Jo

RN
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Using (B4), this becomes
Y
adyaz

811 =

[ L
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4

+28%y2‘—g] +2(—x-— 1)j1 rﬂ‘ﬂafi”-

o 8y Oy

0

Applying integration by parts and boundary conditions to the terms on the right above yields

1 L 2F 2 62
sn:—f J [a +26F+2(-X——1)—‘-"](8q,).
o Jo LOyoz dy? 4 ay?
Applying integration by parts to 8/,, we find that
1 L 3 3 1 L 6.
612=JJ26¢' oy =——2JI A S5y.
o Jo 0ydz* 0yodz* o Jo Oy*0z*
Using this pair of relations and one further integration by parts, the variational relation (B7) becomes
1 L F 53
J J PF_”E_”(L_ l)i‘li _ 2Ti\"_}5_@£=
o Jo L OZ ay 4 oy dyoz* ay

For an arbitrary variation 8(9¢/8y) which fulfills
the boundary conditions, the above may only be true
if the expression in brackets vanishes.

Substituting (B5) for F/0z and (B3) for 0F/3y in
the above, it is found that

8%u

-‘?ﬂ+xﬂ T %, =0
0z ay 9z ay 9oz

If the above is differentiated once in z and u is
eliminated using (B2), then we arrive at

6. 2 2. 2
L AN
9z8 dyoz ay?  0z%

which is the characteristic value equation (9). It is
thus seen that a function i that satisfies the no-slip
boundary conditions and maximizes T in the vari-
ational relation (29) is a solution of the characteristic
value equation (9).

3

APPENDIX C

Inclusion of the Meridional Component of
the Earth’s Rotation

When the aspect ratio of inertial circulations is of
order unity, one would expect that the meridional
component of the Coriolis acceleration influences
the instability. We here solve the eigenvalue prob-
lem for the condition of marginal stability with all
components of the Coriolis acceleration included.
Elementary scale analysis of the primitive equa-
tions shows that the terms involving the meridional
component of the rotation vector are negligible
except when the hydrostatic approximation breaks
down. The perturbation equations are here derived
with a finite static stability included as an illustra-
tion of this point.

We first consider the case in which the un-
perturbed flow is purely meridional. It is then
easily shown that provided that one may neglect
the variation of f with latitude, the meridional com-

ponent of the earth’s rotation does not enter the
perturbation equations for inertial instability. This
is so because we permit no variation along the axis
of the inertial rolls, which in this case are aligned
north—south. Thus the meridional component of
the ambient rotation cannot influence the instability.
The condition that the variation of f in latitude may
be neglected is that the fractional change in f fol-
lowing the parcel motion is small during a time
increment characterizing the growth of the insta-
bility. This may be written

fooar f

where V, is a velocity scale, 8 is df/dy, and At is a
characteristic time scale of the disturbance. Follow-
ing MclIntyre (1970), we take the latter to be
O[f~V*%(V,/H) V2]. Then the above condition
becomes

COSp

<

b

Hl/?( VO )1/2

a \2Q (sing)??

where a is the mean radius of the earth and ¢ the
latitude. Taking H = 10 kmand Vy = 100 m s™!, we
find that the left-hand side of the above is order
unity at about 3° latitude and decreases to 0.2 at 10°
latitude. Considering the liberal estimates of H and
V,, it seems safe to suppose that one may neglect
the variation in f with latitude in this problem out-
side the tropics.

We next consider the case where the unperturbed
flow is purely zonal. The Boussinesq equations for
symmetric flow on an f plane may be written

Z’—j = fu - f*w + vV, (Cl)
d 1

1% s, (C2)
dt Po Oy
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d 19
e R A B fru Ve, (CY)
dt Po 0z
dB
—— T VzB’
= K (C4)
v L, (Cs
ay 0z o )
where f* =20 cos¢p and B = —g(p'/p,) and the

notation is otherwise the same.
We take as a base-state solution to this set

=0
= U,z + U,,yJ ,
B(y,z) = N2 + B,y
"where U,, U,, N? and B, are constants. We find from
(C2) and (C3) that the thermal wind relation betweén
B,and U, is

' = —fU, - f*U,. (C6)

Proceeding as before, we find the time-independent
form of the equations describing perturbations about
this base state, analogous to (7), may be written
— (V2

2

—fn———+ [eN? + f*(f* + U,)

2

x %y—z_+ FQf* + (4 + o)D)

) 0%
*Uyo — D] - 7
+f \ (o N vz (o))

In the special case that f = U, = 0, the above re-
duces to the Rayleigh convection problem with the
single stability parameter
* * 4
Ra' = Ra + f-——-———(f + U)H ,
V2

where Ra is the Rayleigh number. If U, < —f¥*,
the flow may become unstable at Rayleigh numbers
below the usual critical value. When U, < —f* at
the equator, the square of the angular momentum
decreases radially outward and the flow is classwally
inertially unstable. If we require that

aN + fH(f* + U,) =
and scale z by H and y by
oN? + f*(f* + U,)
[fUz(l +0) + 2ff* + f*Uyo - 1)]

the perturbation equation will reduce to the form
(9) or (10) if we take the flow to be either hydro-
static or neutrally stratified. In the former case, we
require that
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fUQ1 + o) + 2ff* + f*U, (0 — 1)
o N2 + f*(f* + U,)
Then the stability parameter x; in (9) will be defined

,f
« 1" ol
[(1+0')U +2f +ny(a‘ 1)

- (C8)

aN? +f*(f* + U

Since in general U, > f* and U, > U, the above is
very nearly equal to the definition of x; whenf* =
except very near the equator. In the case where
f = 0, the perturbation equation becomes

O _ (Y,
dz8 (3y2 dydz )

where
HY*0, o ~ 1)
PIoN? + fA(f* + U,)]
and y has been scaled by
oN? + f*(f* + U,)
f*US e - 1)

When S§; exceeds some critical value, instability
will set in. The growth rate of the equatorial insta-
bility will. be O(f*V2U,'?) which is somewhat
slower than the usual form of inertial instability.
Note also that no instability occurs when the
Prandtl number is unity. Upon examination of (C8),
it is evident that one must be very close to the
equator before terms involving f* become important
in hydrostatic flows.

Finally, the special case of neutrally stratified flow
is examined. Here we take

ONY A 0D = 0

and scale both y and z by H as before. Then (C7)
reduces to the form (10) with x;; redefined as
2f*+(1+0')U f U,
Xit = — ( - 1.
7 i f

Away from the equator, the contribution of terms
involving f * is again small, since in general U,>U,
and U, > f*. At the equator, the perturbation equa-
tion becomes

(85)

. ) 6211;
-V =8; ——,
_ (V?) ‘l’/ oz
where
5= HYf*Uy o - 1)
‘11 >

1 4
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Again, instability will only occur if o # 1, and the
growth rate will be O(f*12[/ ,1?).

It is evident from this analysis that the meridional
component of the earth’s rotation vector does not
modify the inertial stability problem in any im-
portant way, even in neutrally stratified flow, ex-
cept perhaps very close to the equator. In the latter
case, the use of an initial state in geostrophic
balance must be questionable. The smallness of the
effect of the meridional component of the Coriolis
terms is physically attributable to the smallness of
the vertical component of shear vorticity compared
to the horizontal component in most geophysical
flows.

REFERENCES

Arakawa, A., and W. H. Shubert, 1974: Interaction of a cumulus
cloud ensemble with the large-scale environment, Part I.
J. Atmos. Sci., 31, 674-701.

Chandrasekhar, S., 1961: Hydrodynamic and Hydromagnetic
Stability. Oxford University Press, 654 p.

Charney, J. G., and A. Eliassen, 1964: On the growth of the
hurricane depression. J. Atmos. Sci., 21, 68-75.

KERRY A. EMANUEL

2449

Fritsch, J. M., C. F. Chappell and L. R. Hoxit, 1976: The
use of large-scale budgets for convective parameterization.
Mon. Wea. Rev., 104, 1408-1418.

Kuo, H.-L., 1954: Symmetric disturbances in a thin layer of
fluid subject to a horizontal temperature gradient and rota-
tion. J. Meteor., 11, 399-411.

MclIntyre, M. E., 1970: Diffusive destabilization of the baro-
clinic circular vortex. Geophy. Fluid Dyn., 1, 19-58.

Pellew, A., and R. V. Southwell, 1940: On maintained con-
vective motion in a fluid heated from below. Proc. Roy.
Soc. London., A176, 312-343.

Rayleigh, 1916: On the dynamics of revolving fluids. Proc. Roy.
Soc. London., A93, 447-453.

Solberg, H., 1933: Le mouvement d’inertie de L'atmosphére
stable et son role dans la théorie des cyclones. Memoir
presented to the Meteor. Assoc. U.G.G.I., Lisbon, Dupont
Press, 66-82.

Stone, P. H., 1966: On non-geostrophic baroclinic stability. J.
Atmos. Sci., 23, 390-400.

——, 1972: On non-geostrophic baroclinic stability, Part III. The
momentum and heat transports.J. Atmos. Sci., 29,419-426.

Walton, 1. C., 1975: The viscous nonlinear symmetric baroclinic
instability of a zonal shear flow. J. Fluid Mech., 68,757-768.

Yanai, M., and T. Tokioka, 1969: Axially symmetric meridional
motions in the baroclinic circular vortex: a numerical ex-
periment. J. Meteor. Soc. Japan, 47, 183~198.



