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ABSTRACT

Observations in saturated frontal regions occasionally show that the flow has become neutra} to re\r‘etjsibl_e
slantwise displacements along pseudo-angular momentum surfaces so that the effective potequal vorticity is
nearly zero for further saturated displacements. A strong responsc to frontogenesis is indicated in tpgse
regions, as suggested by the parabolic nature of the Sawyer-Eliassen equation when the potential vorticity
vanishes. Using idealized distributions of temperature and geostrophic deformation, we derive solutions of
the aforementioned equation for the cross-front circulation in the case where the potential vorticity is -
vanishingly small for upward displacements but moderate for downward displacements, While the solutions
are self-consistent, it is not known whether they are unique. They show that a strong, concentrated sloping
updraft occurs somewhat to the warm side of the region of maximum geostrophic compression of the
isotherms. This circulation closely resembles the flow in a mesoscale precipitation band analyzed by Sanders

and Bosart.

1. Introduction

Recent observations of frontal systems (e.g., Hobbs,
1978; Carbone, 1982) have revealed a great wealth of
organized mesoscale precipitation bands. Some of the
bands occur very close to the position of recognizable
surface fronts, while others bear a less obvious relation
to the latter. A variety of physical mechanisms has
been proposed to explain bands of the latter kind,
including ducted gravity waves (Lindzen and Tung,
1976) and conditional symmetric instability (Bennetts
and Hoskins, 1979; Emanuel, 1983a,b). A review of
the present state of understanding of these bands may
be found in Parsons and Hobbs (1983).

One part of the New England Winter Storms
Experiment was specifically designed to test the hy-
pothesis that moist symmetric instability, hereafter
referred to as slantwise moist convection, is responsible
for the majority of bands observed in association with
winter storms in New England. Detailed results of
these experiments are forthcoming. We can state at
this time, however, that a majority of those cases
where bands were clearly observed was nearly neutral
or slightly unstable to slantwise convection, as had
been reported by Emanuel (1983b) for a case of
banded precipitation in Oklahoma. The assessment
of stability is based on the method outlined in the
aforementioned paper. According to reversible parcel
theory, a parcel is conditionally unstable to slantwise
convection if it achieves positive buoyancy when
reversibly lifted along a surface of constant geostrophic
pseudo-angular momentum M, defined by

M=V, + fx,
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where f'is the Coriolis parameter, ¥, the component
of geostrophic wind along isotherms, and x a coor-
dinate orthogonal to the isotherms and hence to V.

During the course of the experiment several at-
tempts were made to fly an instrumented aircraft
along a surface of constant M. This was done by
estimating the position of M surfaces from cross
sections constructed using standard rawinsonde
soundings and then measuring A on board the
aircraft, assuming that the measured V was close to
the geostrophic value. In practice, however, V' was
observed to contain significant ageostrophic compo-
nents, especially when strong bands were present.
Nevertheless we were successful in completing flights
over substantial distances where M departed only
slightly from its initial value. A preliminary sounding
of temperature and dew point along one such surface
is presented in Fig. 1, with departures of A from its
initial value indicated in parentheses. Note that over
the constant A/ portion of the flight, which descended
along the M surface, the sounding is close to moist
adiabatic. We interpret this observation to imply that
some form of slantwise moist convective adjustment
has taken place, or is occurring at the time the
observation is made. The theory developed by Eman-
uel (1983a,b) strongly suggests that such an adjustment
is likely in an initially slantwise-unstable baroclinic
atmosphere when lifted to saturation.

What comes as some surprise is that the bands
should sometimes persist for many hours after the
condition of neutrality is observed. This was the case,
for example, with the snow bands observed during
the storm of 11-12 February 1983 as reported by
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FIG. 1. Aircraft sounding along M surface around 0600 GMT
16 November 1983, between Brunswick, Maine and Portsmouth,
New Hampshire. The solid line denotes temperature sounding;
crosses show dew point temperature. Dashed line is a pseudo-moist
adiabat. Numbers in parentheses to left of sounding show departure
of M (m s™') from initial value, while numbers in brackets are
equivalent potential temperature (K) with respect to ice processes.

Sanders and Bosart (1985). A clue as to why this
might be the case occurs in their observation that
some geostrophic deformation was acting on the large
scale temperature gradient at the time that the band
was present. As elementary considerations show that
the response to frontogenetical forcing is inversely
proportional to slantwise stability, a particularly strong
response should ensue in an atmosphere which, having
been previously unstable to slantwise convection, has
undergone an adjustment to neutrality. It is the
purpose of this paper to examine the nature of the
response to frontogenetical forcing of an atmosphere
which is nearly neutral to saturated slantwise convec-
tion.

2. Scaling of the Sawyer-Eliassen equation and valid-
ity of the geostrophic momentum approximation

By way of pursuing this problem we consider the
response to geostrophic deformation of an idealized
baroclinic zone in which the effective potential vor-
ticity takes on one value for unsaturated (downward)
motions and another in cloudy regions of ascent. The
geostrophic potential vorticity is here defined

4e = [(ﬂ<+V><V) Vo), (1

f()
where 6 is the potential temperature with reference
value 6y, g the acceleration of gravity, f the Coriolis
parameter (assumed constant), and V,, the geostrophic
velocity vector. If we choose a coordinate system in
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such a way that 6 varies-only with x and z, the above
may be written

(e )= (55)

where N is the buoyancy frequency and V, is the y
component of the geostrophic wind. The thermal
wind relation

)

g _ 3V,
o ax 0z

has been used in deriving (2) from (1).
In saturated regions we additionally define a moist
geostrophic potential vorticity:

VAN CIAY
=N 14/ - (——g) ,
( I 6x) 0z
where N,, is a buoyancy frequency for moist adiabatic
motions. As shown by Durran and Klemp (1982),

N, is related to the vertical gradient of equivalent
potential temperature by :

2 _ & Tm ad,
v HOI‘daz

where T, and T'; are the moist and dry adiabatic
lapse rates, respectively.

The geostrophic potential vorticity plays an ex-
tremely important role in the dynamics of frontal
zones. When g, is negative, the flow is symmetrically
unstable, while when g,, is negative in saturated
regions of the atmosphere, while g, is elsewhere
positive, slantwise moist convection ensues (Bennetts
and Hoskins, 1979; Emanuel, 1983a,b). As has been
mentioned in the Introduction, there exists evidence
that slantwise moist convection renders regions of
the atmosphere neutral to further convection in which
case g, defined by (3), tends to zero from below.

When g, and ¢, are everywhere positive, they
determine the intensity of the vertical velocity forced
by a given geostrophic deformation of the temperature
field. This can be seen in the mathematical form of
the Sawyer-Eliassen equation phrased in geostrophic
coordinates. The latter are defined by the transfor-
mations

(3

X=x+Ve/f,

Z =z, 4)
where V, is again the front-parallel component of the
geostrophic flow. In these coordinates, the Sawyer-

Eliassen equation takes the form (e.g., Hoskins and
Draghici, 1977)

AL
GX( gax) AT 9z? 20, )

where ¢ is the streamfunction in the plane across the
front, which is taken to be parallel to the y axis, and
Q is the geostrophic forcing,
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where U, is the cross-front geostrophic flow.

One can see immediately that g, determines the
ellipticity of the Poisson equation (5): If g, is positive
it is elliptic while if g, is negative it is hyperbolic. In
the latter case, the assumptions in the derivation of
(5) are invalid and the resulting flow will contain a
large convective component. As we shall show pres-
ently, g, must be sufficiently large for validity of the
geostrophic momentum approximation involved in
the derivation of (5).

If in a particular circumstance g, is constant in the
region of interest, then we may scale Z by H and X
by the quantity Hg,"?/f where H is a characteristic
depth, whence (5) takes the form

VA = 2H?Q. ©)

The amplitude of the streamfunction is thus deter-
mined purely by H and the geostrophic forcing Q.
The vertical velocity, however, will scale as g,~'/%

_ Mg i _ Mg Y

T ax  foX* Hg2ax’
g

where 7, is the geostrophic absolute vorticity and the

-asterisk denotes the unscaled value of X. Thus a large’
response in vertical motion may be expected in
regions where g, is small and Q is large.

It is evident that in the limit of small g, the
ageostrophic velocities blow up and one is led to
question the realism of the solutions from two points
of view. The first concerns the validity of the geo-
strophic momentum approximation used in deriving
(5), while the second has to do with the likelihood of
the development of turbulence. Both concerns lead
to similar restrictions on the smallness of the potential
vorticity.

The geostrophic momentum approximation for-
- mally asserts that the total acceleration of the ageo-
strophic velocities is small compared to that of the
geostrophic velocities. The approximation is based
on the observed smallness of a Rossby number based
on Lagrangian time scales rather than on Eulerian

length and velocity scales and leads to an energetically -

consistent set of equations (see Hoskins, 1975, for an
extensive review of the geostrophlc momentum equa-
tions).

An estimate can be made of the conditions for the
validity of the geostrophic momentum approximation
simply by using the scaling of length and streamfunc-
tion evident in (6). Consider a north-south two-
dimensional frontal zone subject to a constant geo-

strophic stretching deformation. We may represent

the horizontal velocities and pressure by
U=U,— ax+ U,
V=V,+ay+ Vg,
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, 1
P =D+ pofaxy = poe’(x? + y?),

where 2« is the magnitude of the deformation, p, is
a reference density, Uy and V7, are departures of the
geostrophic velocities from those represented by the
simple deformation field, and U, and V,, are ageo-
strophic velocities. Hoskins and Bretherton (1972)
showed that all variables aside from the basic defor-
mation flow and associated pressure field are inde-
pendent of y so that U, = 0. The zonal momentum
equation may be written

du, ¢, AUag dU,,
dr dt
Using U, = —ax for the first term on the left and

substituting the previous expressions for #, v and p;
we have

du,

==,

= aUsg — )
1 op’ 5y - '
=————fay+ o’x + f(Vy + Vg + ap),
po 0X
which reduces to
au, 19, :
s —aly=—2Zwfv, ()

where V' = Vi + V.

According to (7), we may assume geostrophic
balance of the perturbation pressure gradient and
meridional flow if

|Usgl < | fa='V7), ®)
AUy, .
7 | < lf Vi &)

The magnitudes of the terms on the left of (8) and
(9) are now estimated from the scaling of the stream-
function equation (6) with constant potential vorticity.
According to (6), the magnitude of ¥ will be

¥~ QfH?, (10)

where H is a vertical length scale and Q, is a scale
for Q which, from the latter’s deﬁnmon will be of
order

Qo ~ faVx, (11)
where V, is a typical value of the vertical shear.

Using the coordinate transformations (4) and the
chain rule,

Scaling X* by Hq'”?f~" as before and using (10) and
(11) in the above expression, we have

Usg = Olaf "' Vo H) + O(aVf "' Hg™'?).  (12)
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The magnitude of the acceleration of U, is similarly
estimated:
dU,, aU, au,
~ U, L+ w2
dt £ 9x* azZ*

= O(UaV0’q") + Omoe’V’Hf g7,

where 7, is an absolute vorticity scale.
Using (12) and (13), the inequalities (8) and (9)
result in the four requirements
2

(13)

> % (14)
\ .
[0 4
f%>ﬁ’ (15)
a el
Ty (16)
2
i (7)

If we also take U, = ax ~ aV,H [, then (16) and
(17) are virtually identical. In view of (14), it is
evident that (16) and (17) are stronger conditions on
g than is (15). Thus, in addition to the requirement
that the magnitude of the geostrophic deformation
be small compared to f (which is usually observed to
be the case), we will use (17) as a restriction on the
smallness of g. Note that since both V; and 5, become
large near the front, (17) is eventually violated as
frontogenesis proceeds.-

In addition to the aforementioned requirements
for the validity of the geostrophic momentum ap-
proximation, we must also be sure that the stability

is large enough to prevent Kelvin-Helmholtz instability -

and subsequent turbulent breakdown. For the flow
to remain stable in this sense, it is sufficient that the
Richardson number (Ri) remain “greater than Y%.
From the definition (2) of g, this may be stated

Ri=[(—q~+1)>1,

n sz 4
or
g _1nq
>3 b (18)

where 7 is the absolute geostrophic vorticity. Provided
that n < 4f, (17) will be a stronger condition on ¢
than (18). The expressions (14), (17) and (18) may
be considered fundamental requirements for the va-
lidity of the geostrophic momentum approximation.

3. The cross-stream circulation in an idealized partly
saturated frontal zone

" As a means of determining some of the elementary
aspects of the effects of condensation on frontal
circulations, we will solve the cross-stream circulation
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equation (5) with specified geostrophic wind and
deformation characteristic of a front, while letting g
take on one value in unsaturated regions, and another
effective value, g,,, where liquid water is present. In
order to make progress while retaining simplicity, it
is necessary to make some rather restrictive assump-
tions. The first is that the circulation has evolved in
such a way that regions of upward motion are satu-
rated while elsewhere the flow is unsaturated. This
presumes, of course, that all condensed water imme-
diately falls out and we will further assume that it
does so without evaporating appreciably. This may
be approximately true with respect to snow and in
other cases may be regarded as a crude approximation
of nature.

With these assumptions, the potential vorticity
formally becomes a function of ¥ and (5) becomes
nonlinear. To circumvent this problem, we first as-
sume that upward motion prevails for all X greater
than some value L, while downward motion occurs
elsewhere. Having then found a solution to (5), we
adjust L toward the value of X where w changes sign
and so attempt to iterate toward a self-consistent
solution of (5). Even if we are successful in this
endeavor, however, there is no guarantee that the
solution is unique; one might very well have postulated
a number of spatially discrete regions of small g
instead and converged on a different self-consistent
solution. We take the position that some of the salient
features of the effects of condensation will be illus-
trated adequately by the self-consistent solution we
do obtain, even if other self-consistent solutions might
have been attained through an initial value approach
to the same problem.

In order to obtain more or less realistic solutions
to (5), we choose a forcing which is concentrated at
TY " 0 and which decays away exponentially at large
X

Q = Qoe P!, (19)

This may be regarded as pertaining to a situation in
which the geostrophic deformation and/or the hori-
zontal temperature gradient decay exponentially away
from X = 0. If the geostrophic deformation varies
with X and if dV,/3Z is not zero, then it follows that
U, is a function of Z as well as X and we must
therefore account for the shearing deformation term
in the geostrophic forcing, unless 8V, /dX is zero.

In summary, (5) will be solved for the case where
Q is given by (19) and in which g, = ¢, for X > L
and g, = ¢, for X < L. The assumption that w
changes sign along a surface of nearly constant X will
be justified a posteriori. We also assume that the
domain is bounded above and below by rigid plates
separated by a distance H; since (5) is elliptic for
positive g the artificial upper lid will have only
quantitative effects on the solution away from the
upper boundary. The basic state which will be used
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FIG. 2. Assumed distribution of g, in X-Z space used to calculate
the cross-front circulation. Upward motion is assumed for X > L,
where ¢, = ¢¥, while downward motion is assumed elsewhere,
where ¢, = g%. The geostrophic forcing is greatest along X = 0.

to determine the cross-front flow 1is illustrated in
Fig. 2.

Before solving (5), it proves convenient to normalize
the dependent and independent variables as follows:

X* =Hgy'f"'=7'X )
Z*=HZ

V=21 TQHY ¢
b* = H g3 'fxb
qt = q%q,

where the asterisks denote the dimensional variables.
With these normalizations, (5) becomes

2 0 Py _

(20)
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The boundary conditions on y are
vy=0 on Z=0,1;"
v=0 as |[X|— . (22)

We solve (21) independently in the regions X > L, 0
< X < L and X < 0 and match the solutions across
X = L and X = 0. The matching conditions are

a9
v

ax continuous across X = L,

¥, %{ continuous across X = 0. (23)

In each region, the solution 1s represented- by series
of the form

> J.(X) sin(nw Z),

which satisfy the conditions on ¢ at Z = 0, 1. Here
the J, are as yet undetermined functions of X. We
find the following solutions which satisfy the boundary
conditions (22) and the matching conditions (23):

X>L ¢=23 (Fe ™+ A, sin(nzZ), (24)
odd .

X<L: =2 |:G,,(e“”""I _b e"‘"“)
odd -n

+ Cne”X] sin(nwZ),

where the summations are taken over odd n only
and the coefficients are defined

5

"‘% -blx|
T 8X(an)+622 e (21)
with
. {ql: X> L
1 1, X<L.
4
SinTr—
4
G"=n(b2—n2)
Ay
Cp=

r, = ng~\?

hq,

_ Once a solution (24) is found it is checked for self-
consistency in the sense that upward motion should
occur where g = g,, with downward motion elsewhere.
If this is not the case, L is adjusted toward the region
where w is observed to change sign. By iterating in
this fashion, a nearly (but not perfectly) self-consistent
solution was always found. We take this to imply

- ernL[Gn [b(e™® — 2e7") + ne*] — Fe "Mqib + n)]L .

b
e"”"I:A,,e""L + Fe + G,,(; et — e"’L)]

QIrn+n

that the surface along which w actually changes sign
is very nearly, but not exactly, a surface of constant
X. Indeed, since (24) is not separable, there is no
reason why w = 0 must lie along X = constant. In
order to test the assumption, solutions representing a
ten-term truncation of (24) were examined over a
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small interval of X near X = L. We find that the line
along which w actually changes sign varies no more
than 0.02 nondimensional units in X, so that the
assumption that w vanishes along a line of constant
X is excellent, though not exact. An extremely good
approximation to L can be found, it turns out, by
demanding that dy/dX, as represented by the first
term only of (24), vanish at X = L. This results in
the following condition on L:

(1L—a'"Mb-1)
2(1 +bqll/2)

1

L_b—lln[1+ ] 25)
When ¢, = 1, which denotes uniform potential vor-
ticity throughout the domain, L = 0 as we expect
from symmetry. When ¢, < 1, L is positive definite
(and continuous and finite through » = 1). In the
limit of small ¢,

| (1+b 26)

L._b_lln 2), q <1
This value of L is plotted as a function of the
parameter b, which measures the decay of the forcing
away from X = 0, in Fig. 3. The maximum value of
L, which is In2, is attained when b = 0 while L
becomes vanishingly small with large b.

It was found that a three- or four-term approxi-
mation of the solution (24) is virtually indistinguish-
able from solutions which retain more terms. All the
solutions presented here represent truncations of (24)
to six terms, with L approximately determined
from (25).

The solution for the streamfunction when ¢, = 1
and b = 5.1 is plotted in physical space for the case
V., = constant in Fig. 4. This is a classical picture of
a frontal circulation, with upward motion to the right
and downward motion to the left of the region of
maximum geostrophic compression of the isotherms.

n 1

" 1 1 1 s
| 2 3 4 5 6 7 8 9 10

1 i

FIG. 3. The value of L when g, is small, according to (26), as a
function of the rate of decay b of the geostrophic forcing away
from X = 0.
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By contrast, Fig. 5 shows the frontal circulation with
g, reduced to 1072, As indicated by (25) or (26), the
streamfunction maximum and the sloping updraft
are displaced substantially toward the warm air and
the latter is extremely concentrated, while the down-
ward motion occurs over a considerably larger area.
Figure 6 shows the same solution, but in this case we
have assumed that the geostrophic vertical shear falls
off as e 2 je.,
aa_Vg = Ve Xl = Ve W +Valf|,
VA

This form of 9V, /dz still implies some spatial variation
of the background geostrophic deformation, since
oy, s
9z 0Z°
but the variation will not be as rapid as when 9V,/

dZ is constant.
A solution to the above is

X>0. V=m[Cx)+ Vylz — zp) + 1] — bx,

X <0 V=—-In[-Cx)— Vy(z — 2) + 1] — bx,
(27)
where we have normalized V, b, x and z as follows:
Vi=fb*'vV )
b* = H™'q3™"fxb
x* = Hgt'f '\n7lx ,
z*=Hz

where the asterisks denote dimensional quantities.
The arbitrary function C(x) determines the x depen-
dence of V. As a simple example, we choose C(x)
= 2 sinhbx, which leads to ¥ — 0 as |x] — oo. This
form of V is shown in Fig. 7. In both Figs. 6 and 7
we take b = 5.1 and V, = 30.0.

It should be noted that in the region of small g,
the condition (17) for the validity of the geostrophic
momentum approximation restricts the value of the
forcing relative to ¢. From the definition of Q,

Q* -~ fa VzOe_b|X|a

so that in the region where g, = g¥, (17) may be
written

gt > Q¥ ™ ~ Qof e
Using the normalized value of g* from (20), the
above may be written

Qo < fHqi1q%)" e’ .

Thus for small g, the solutions are valid only when
the magnitude of the forcing is sufficiently small. This
can also be interpreted as a restriction on the mag-
nitude of the (dimensional) streamfunction. From
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FIG. 4. The cross-front circulation in physical space for the case that g, = 1.0 and b = 5.1.
The minimum value of the dimensionless streamfunction is —0.611; contours are at 0.1, 0.3,
0.5, 0.7, and 0.9 times the minimum value. The background dimensionless shear equals b.
Heavy solid line denotes the position of the X = 0 surface.

(20), we may write using the preceding expression for of the dimensionless streamfunction from Fig. 5, we
Qo ' have

W* < 277%(q1q%) 2 H?e" Y, : [U* ~ 2¢y*H 7| g6 ms™". _
where the last coefficient is the magnitude of the The above may be taken to be a restriction on the

dimensionless streamfunction. Taking g* = 107 s™2, typical magnitude of ageostrophic U* in the cold air; -
q; = 1072, and H = 10 km; and using the magnitude obviously much higher values of U* will occur locally

o F]

-1.4 1.2 -0 -8 -6 -4 -2

FIG. 5. As in Fig. 4 but for ¢, = 1072, The minimum value of the streamfunction
is —1.769 in this case and the heavy dashed line denotes the surface X = L.
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FIG. 6. Same circulation as depicted in Fig. 5, but where, in transforming to physical
coordinates, we have taken a background V given by (27), with C(x) = 2 sinhbx, V, = 30.0,
and z, = 0.35.

in the slanting jet. As g, becomes vanishingly small, the limits of validity of the geostrophic momentum
the geostrophic momentum approximation breaks equations, frontal forcing results in a strong, concen-
down and the inertia of the ageostrophic flow will trated, sloping updraft which is located ahead of the

become an important physical effect. region of maximum geostrophic frontogenetical forc-
. . ing. From Fig. 3 and the scaling (20) it is evident
4. Discussion that the distance between the “front” and the updraft

The main result of the previous section is that in  will, in the atmosphere, have a typical value of order
the limit of small moist potential vorticity, pressing 50-200 km.

T T T T T T
8¢ .
8 .
S
a4 .
- o - - - = ~ T - —
P - -~ —
7/ =0
Ve
2+ 7/ J
4
1 ' 1 1 1 L =N ) 1 1
-4 7 -2 -1.0 -8 -6 -4 -2 (o] .2 4

X

F1G. 7. Background V as given by (27) and used to construct Fig. 6. Contour intervals
are 0.1, 0.3, 0.5, 0.7 and 0.9 times the maximum value; dashed line denotes V = 0.0.
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The question naturally arises as to whether a
diagnostic solution such as that displayed in Fig. 5
or Fig. 6 really represents, at least qualitatively, a
solution which might have been arrived at through
an initial value approach starting with very simple
conditions. Close inspection of Fig. 5 or Fig. 6 reveals
the seriousness of this question. The ageostrophic
flow is slightly frontolytic at the position of the
surface front, and strongly frontogenetic near the
base of the sloping updraft. The implication is that
the surface front will propagate more rapidly into the
warm air than it would in the absence of condensation.
It would also appear from these solutions that con-
densation may actually inhibit frontogenesis since the
ageostrophic flow is-frontolytic in the region of stron-
gest temperature gradient. If, as the solutions presented
here seemed to suggest, the ageostrophic convergence
always occurs ahead of the strongest temperature
gradient, with divergence in the vicinity of the strong
gradients, then the collapse to discontinuity predicted
in the dry case (Hoskins and Bretherton, 1972) may
not occur. On the other hand, some of these specu-
lations depend on the details of the temperature
distribution at the surface. It would seem that these
points are worth investigating with an initial value
approach such as a numerical model.

Another effect which has been neglected here is
evaporation or melting of falling precipitation. The
form of the solutions evident in Figs. 5 and 6 suggest

that evaporation will likely occur in the downdraft
below the w = 0 surface, thus modifying the solution
in the direction of a stronger downdraft near the
front. Since the evaporation time scale may be much
less than a pendulum day, a structure more like a
density current may form and this would require full
use of the primitive equations. If the precipitation is
in frozen form, as it was in the New England band
studied by Sanders and Bosart (1985), this is less
likely to be a significant effect.

Once condensation begins in a frontal zone it
would appear that sharp gradients in potential vorticity
develop very rapidly. It is quite likely that these will
be associated with local reversals of the potential
vorticity gradient along 6 surfaces; this raises the
possibility of local barotropic or baroclinic instability
in the frontal system. The general question of the
stability of frontal zones to three-dimensional pertur-
bations is quite broad and, it would seem, full of
possibilities. Some of these have been examined re-
cently by Mechoso and Sinton (1983), and are con-
sidered beyond the scope of the present work.

An example of a frontal circulation in the presence
of small moist symmetric stability may be found in

_the work of Sanders and Bosart (1985) who examined,
among other things, mesoscale bands which were
observed in the snowstorm of 11-12 February 1983.
A field of streamfunction computed from the ageos-
trophic horizontal flow in their cross section through
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FIG. 8. The ageostrophic mass streamfunction (10° m mb s™') at 1200 GMT 11 February
1983, in a vertical plane from Pittsburgh, Pennsylvania to Cape Hatteras, North Carolina.
Heavy dashed line shows axis of maximum frontogenetical forcing, dU,/dx - 37/dx. See Sanders

and Bosart (1985) for details.
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the bands is shown in Fig. 8, together with an
indication of the axis of maximum frontogenesis.
The streamlines reveal a concentrated sloping updraft
located about 100 km ahead of the region of maxi-
mum forcing. Examination of cross sections of pseudo-
angular momentum and equivalent potential temper-
ature in Sanders and Bosart (1985) indeed show that
the moist symmetric stability was small in the warm
air in this case. The ageostrophic circulation shown
in Fig. 8 qualitatively resembles the idealized flow in
Figs. 5 and 6. We note that the cold air into which
precipitation was falling was observed at times to be
saturated, but in this case even the moist symmetric
stability was large within the cold air.

5. Conclusions

Recent analyses of data from standard observing
networks and from special field experiments reveal
that lapse rates along pseudo-angular momentum
surfaces in frontal zones are often moist adiabatic,
suggesting that some kind of slantwise convective
adjustment has taken place. The effective potential
vorticity in these regions is very small. The analysis
presented here shows that when such regions are
subjected to frontogenetical forcing, a large response
ensues on the warm side of the region of maximum
forcing. If the potential vorticity is not small in the
region of downward motion, as will be the case when
such regions are unsaturated, the response takes the
form of a concentrated sloping updraft ahead of the
axis of maximum forcing, with weak downward mo-
tion elsewhere. The results suggest that condensation
may inhibit frontogenesis under these conditions. The
solutions compare favorably with the circulation in
the baroclinic zone of an intense snowstorm analyzed
by Sanders and Bosart (1985). Since condensation
produces a strong source of potential vorticity at low
levels, it is likely that the necessary condition for
barotropic/baroclinic instability will be met locally in
the frontal zone, possibly leading to waves of the type
observed by Carbone (1982). Although the results
presented here show the salient features of the response
to frontogenesis of a flow with small moist slantwise
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stability, an initial value approach to the problem
will be needed to determine the time-dependent
characteristics of frontal circulations in the presence
of slantwise moist convection.
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