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SUMMARY

Conditional symmetric instability has recently been proposed as an explanation for rain and cloud bands
which are imbedded in larger regions of precipitation associated with extratropical cyclones (Bennetts and
Hoskins 1979). In their paper, Bennetts and Hoskins discuss the use of a circulation integral for calculating
growth rates of the instability. The purpose of this note is to demonstrate that the growth rates so calculated
will be exact eigenvalues of the associated linear perturbation equations provided that these growth rates are
maximized with respect to the path of integration. A simple application is presented and compared with
results of a numerical experiment using the Bennetts and Hoskins model. The circulation integral method
appsars to be a simple way of assessing the potential for conditional symmetric instability in the atmosphere.

1. INTRODUCTION

Among the more striking mesoscale features associated with extratropical cyclones are
the linear arrangements of precipitation and clouds which are found poleward of the surface
warm front and generally imbedded within the region of synoptic scale upward motion (e.g.,
Hobbs 1978). As these features are generally aligned with the vertical shear of the wind in
the layers in which they are observed (Elliot and Hovind 1964), Bennetts and Hoskins
(1979; hereafter referred to as BH) proposed that such features are manifestations of
conditional symmetric instability of the synoptic scale flow. Emanuel (1979} has shown that
symmetric instability generally results in circulations of mesoscale proportlons thus
providing additional support for the theory advanced by BH.

In their paper, BH describe the use of a circulation integral for making estimates of the
growth rate and critical shear necessary for instability. The primary advantage of the use of
such an integral is that the essential non-linearity which appears when condensation is
permitted only in the rising branches of the circulation can be removed by regarding the
static stability as a function of the independent space variables rather than the dependent
vertical velocity variable, and then choosing the spatial discontinuity of the stability to
coincide with the reversal of the vertical velocity. The main disadvantage of the integral
theorem approach is that the calculated growth rates or critical shears are not eigenvalues
of the linear equations; indeed they are dependent on the streamfunction chosen in applying
the integral theorem.

The purpose of this note is to demonstrate, by use of a variational theorem, that the
growth rates estimated using the circulation theorem are necessarily underestimates of the
growth rates computed as eigenvalues of the linear equations. Estimates of critical
Richardson numbers for the onset of conditional symmetric instability are then made using
the variational and circulation theorems.

2. LINEAR EIGENVALUE EQUATIONS

Following BH, we consider two-dimensional zonally symmetric perturbations to an
inviscid, Boussinesq zonal flow on an / plane. The linearized primitive equations for such a
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flow may be written
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Here the perturbation values are the zonal velocity u, pressure p, and buoyancy B; and mass
continuity is enforced through the use of a streamfunction  defined so that

where v and w are the perturbation values of the meridional and vertical velocity respectively.
The mean quantities which appear in Eqgs. (1)«4) are the constant mean density p,, the
vertical derivative of the zonal velocity U, the absolute vorticity 7 (= f — U.), and the static
stability N? defined
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where g 1s the acceleration of gravity and 8, is a reference potential temperature, N3, U,
and #j are permitted to be functions of y and z, and U, satisfies the thermal wind relation.

By eliminating successively the perturbation pressure, buoyancy, and zonal velocity, a
single equation for ¥ results:
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Since the base state is constant in time, we may assume a time dependence of the form
exp(ot), where o is a growth rate. Emanuel (1979) has shown that oscillatory instability is
not possible in this case, hence ¢ is assumed real here, With this substitution Eq. (5) becomes

o oy oy = 0P
272 il NZ h i e A
VY + 5 N +faz(n +T, 3 ) fay .7 =0, . (6
and with boundary conditions in y and z specified Eq. (6) may be regarded as an eigenvalue
problem for o,

It can be shown that a necessary condition for o to be real is

Nl
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somewhere in the region under consideration. Here Ri is the local Richardson number,
Ri = N?/U,?

The expression Eq. (7) is equivalent to the condition that g, the Ertel potential vorticity
be negative somewhere, and this condition is rarely satisfied in the atmosphere. If, however,
condensation is occurring, the effective value of N may be small or even negative, allowing
Eq. (7) to be more easily satisfied. BH considered those instances in which condensation
occurs only in the region of upward motion, in which case N2 is a function of w(i) and Eq.
(6) is no longer linear. Even so, Eq. (6) may be solved by allowing N ? to take on two separate
values in two regions of the y-z plane. Once the soluiion for w is obtained, the surfaces
separating the two regions of different N? are adjusted to coincide with surfaces across which
w reverses, and the calculation is performed again. After several iterations, a solution may be
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obtained in which N? takes on a smaller value in the region of upward motion than it does
in the descending branches. Such a procedure has been described by Kuo (1965) for the case
of moist Rayleigh convection. Its application here is, however, rather tedious due to the
different slopes of the effective potential temperature surfaces within and outside the
ascending branch. An alternative procedure, applied by BH, involves the use of a circulation
theorem, a description of which follows.

3. THE CIRCULATION INTEGRAL FOR SYMMETRIC FLOW AND INTEGRAL CONSTRAINTS ON THE
GROWTH RATE AND CRITICAL SHEAR

We begin by defining the perturbation circulation around a closed line in the y-z plane:
C=§V.dl

where V' = w'k + v’} and dlis an incremental distance along the integration contour. k and
7 are unit vectors in the z and y directions, respectively. The second derivative in time of C
may be expressed in terms of the perturbation streamfunction using Eqs. (1}-(4). Making the
substitution exp(c?) for the time variation, there results:
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Here U, ij and N? may be functions of y and z.

It is now demonstrated that when 4l is taken to be everywhere parallel to a closed
streamline, the system of closed streamlines which maximizes o in Eq. (8) is indeed a
solution of the actual eigenvalue Eq. (6). In order to show this, however, 1t is first necessary
to illustrate a particular relationship between Eq. (8), integrated over all possible closed
streamlines in a circulation cell, and Eq. (6), multiplied by ¥ and integrated over the area
enclosed by the outermost closed streamline,

We first write Eg. (6) in the form

o2Vhy + F{y(y,2)} = 0, . . : {9)
and Eqg. (8) in the form
c*$ V.dl+ § G{y(y,z)}.dl = 0. : . (10)
It can easily be shown that
Vi = 1.V =V,
and
FGy) = 1.V x G(f), : : . (11)

where { is the unit vector in the x direction. Suppose now that F(y) is multiplied through by
W and integrated over the entire area bounded by the outermost streamline, ¥ = 0. By

Eq.(11),
‘ﬁ; W F(yr)dA = ﬁc!ﬁ(‘? X G().8)dA, (12)

where ‘¢’ denotes area integration over the cell,

Next, the area increment dA in the y-z plane is expressed in terms of orthogonal
co-ordinates, one of which is everywhere parallel to a streamline and the other of which is
everywhere perpendicular. Denoting the former by s and the latter by n, we have

dA = d&‘dﬂ-——dS"’l}; lfl
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since, by definition, V is a function of » alone. With this substitution, Eq. (12) may be

written
ffﬁjg W Fy) dd = f fftﬁ{?xc(w) }wdsdljl

Here the area integral is expressed as a contour integral around a streamline s and an
integral over all streamlines from 0 to the ‘streampoint’ ¥ _,,. It can be shown, using
integration by parts, that the above is equivalent to:
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The area integrals on the right are performed over an area bounded by any general stream-
line i ; the result is multiplied by ¥ and then evaluated between i = 0 and ¥ = tfmax for the
first term on the right, and integrated between ¥ = 0 and ¢ = _,, in the second term.
The subscript gy denotes ‘general streamline.” We next apply Stokes’ theorem to the integrals

on the right of Eq. (13):
*max 'I"max
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where ‘s’ denotes contour integration along a streamline. The first term on the right of Eq.
(14) vanishes because at one end point iy = 0 and at the other the contour integration is
performed over a streamline of vanishing length. Notice that the remaining term is simply
the contour integral Eq. (8) evaluated along the streamlines and then integrated over all
streamlmes m a cell. Referring back to Eq. (11), one also notes that the same procedure
leads to the conclusion that

%; WV dA = — FMH; v, dl}dl,f/. . . a5)
[ 0 g

Using Egs. (9), (10), (14), and (15) we may express ¢ as

¥ max
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It can now be shown that g%, estimated using Eq. (16), reaches an extreme value when the
streamfunction is an exact solution of the eigenvalue Eq. (6). A variation of g% with respect
to Y may be written

r
Sg? = — (51 - .512) - Ii (I, — ¢%8I,). . .1
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The extremum of ¢ is found by setting the above equal to zero. Using the definition of
F(y) from Eq. (6) and performing the variations with respect to  in Egs. (16), (17) becomes:

ﬁ {2}"(61& 62¢1 + o azw) + ZNz(éqb ;l’b + Yo 62{/)
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Using integration by parts and noting that the boundary condition requires that y and its
variations vanish at all boundaries, Eq. (18) may be rewritten
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For an arbitrary variation &y the expression in small brackets must vanish in order to
satisfy Eq. (19). This expression is identical to the eigenvalue equation Eq. (6), so that the
extremization of o* with respect to the streamfunction in Eq. (16) is accomplished when the
streamfunction satisfies the linear eigenvalue equation.

It can be further demonstrated that the second variation of Eq. (16) is negative definite
when the first is zero, thus ¢? estimated from (16) will always be an underestimate of its actual
value. The same conclusions can be drawn for the calculation of the critical shear made by
setting ¢ equal to zero in (16), except that the critical shear will be overestimated in this

Case,

4. A SIMPLE APPLICATION OF THE VARIATIONAL AND CIRCULATION THEOREMS

In practice, one could construct an arbitrary system of closed streamlines in any general
zonal flow and evaluate the left- and right-hand sides of Eq. (8) for each streamline, average
the results for each side, and calculate ¢°. Performing many such calculations for different
geometries of the streamfunction and choosing the one which yields the maximum value of
a* will give the ‘best estimate’ of the growth rate. As discussed previously, such an estimate
will be an underestimate,

For simple flows in which U, and # are constant and within which 7 is chosen to be a

Figure 1. Congruent streamtubes used to estimate the critical stability parameters. The dashed lines

illustrate the slope (Sy) of the dry isentropic surfaces; the slopes of the updraught and downdraught are Sy

and Sg, respectively. The downdraught and horizontal return branch are both assumed to cover a cross-
sectional area Ag, while the area covered by the updraught is A..



830 KERRY A. EMANUEL

function of only the sign of w (in order to simulate the effects of condensation in the upward
branch alone), it seems clear that when the streamlines are chosen to be mutually congruent,

the evaluation of ¢ from (8) will be the same for each streamline. Therefore, and in order to
demonstrate the application of the variational and circulation theorems, we proceed by
calculating the critical Richardson number for the onset of instability in a flow in which U,

and # are constant and N2 assumes the constant values N2 in the updraft and N2 elsewhere.

The chosen geometry of the streamtubes consists of a set of congruent triangles, as illustrated
in Fig. 1. As in BH, the cross-sections of the ascending and descending branches are permit-
ted to have different areas, but here we do not constrain the updraught and downdraught to
lie along surfaces of 6, and 6, respectively, but instead determine those slopes which
maximize the critical Richardson number. We note in contrast to BH that while trajectories
along & surfaces encounter the least resistance, such trajectories are longer than those which
cut across 0 surfaces; thus it is not clear that the most unstable mode will have streamlines
exactly along # surfaces. We will take into account the work performed along the entire
streamline, whereas BH neglect part of the return circulation in their integral.
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Figure 2. Critical value of the stability parameter (7/fRi)~! as a function of the ratio of moist to dry static
stability, N.2/Na®. These are estimates from the circulation theorem; each line is labelled with the value of
AafAu. Sy is fixed at 10-3, but its value is influential only at small values of N2

Performing the integrals in Eq. (8) using the hypothetical streamtubes shown in Fig. 1
results in an expression for the estimated critical Richardson number:

S/Ri 21+ ) = (NSN3 = S,
GOR = s s; + @+ Sesprsi— s @

where Ri = N3/UZ, 5, is the slope of dry isentropic surface, S, and §, are the slopes of the
updraught and downdraught divided by .S,, and

Ay 1+ SPESE\”
L= A \1T+ 578

The values of S/ and S; which maximize (7//)Ri in Eq. (20) are calculated and displayed in
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Figure 3. Normalized inverse slopes of the ascending {dashed) and descending (solid) branches of the

symmetric circulation associated with the critical values of the symmetric stability parameter displayed in

Fig. 2. Curves are labelled with the assumed value of A4/ Au. Slope of ascending and descending branches are
equal when Ag/A4. = 1.

Fig. 3, while the associated value of (i7/f Ri) ! is plotted in Fig. 2, which is drawn in the same
format as BH’s Fig. 3 and 7. The curves in each case are labelled with various values of
A,/A,. (This ratio is not the same as the parameter « used in BH.)

The neutral stability curves in Fig. 2 are nearly straight lines except near the N3 = 0
axis, where they have a sharp downward trend. It should be noted in Fig. 3 that the up-
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Figure 4. Same as Fig. 2 but with Rayleigh damping added. The Rayleigh damping coefficient o is set equal
to (0-3/9)*. Dashed lines represent estimates from the circulation theorem (each for a different value of
AafAy), while the solid line is an approximate neutral curve derived using the numerical model of BH.
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draught and downdraught have the same slope except at small values of N2/N3Z, in which
case the updraught naturally has a greater slope than the downdraught. At larger values of
the moist stability, the slopes become parallel so as to minimize the length of the horizontal
return branch of the circulation (Fig. 1) which is inertially stable, even though the trajectories
elsewhere cut across isentropic surfaces. When the slopes are equal, they are intermediate
between the slopes of dry and moist isentropic surfaces.

In order to compare these results fo those of the numerical simulation described by BH,
the model was run in a shallow (Boussinesq) domain with small viscosity and constant N3
and N2 (Christopher Nash, personal communication). Since it was evident that some
numerical diffusion was occurring, we chose to add some Rayleigh damping to the analytical
model in order to facilitate the comparison. Equation (16) will still be valid provided that o
is interpreted as the Rayleigh damping coefficient rather than the growth rate.

Figure 4 shows the critical shear parameter as a function of N2/N} for the case where
o® = 0.3/7. The dashed lines show the relationship for various values of 4,/4, and the
solid line is the approximate neutral curve from the aforementioned numerical simulation.
Agreement is quite good when A4,/4, is about 5. It appears that useful criteria for the onset
of conditional symmetric instability can be obtained from the circulation theorem.

5. CONCLUSIONS

A variational theorem has been developed which shows that the growth rates or critical
Richardson numbers estimated using a circulation integral applied to a zonally symmetric
flow with arbitrary shear and static stability will necessarily be understimates of the cor-
responding solutions of the exact linear eigenvalue equation. A simple application to the
theory of conditional symmetric instability gives results which compare reasonably well with
those obtained in an earlier study by Bennetts and Hoskins (1979).
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