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ABSTRACT

Numerous budget studies of organized persistent systems of convective clouds outside the tropics suggest
that circulations of mesoscale proportions are important in supplying moisture to the convective clouds,
though the dynamical nature of mesoscale flows remains poorly defined. In Part I (Emanuel, 1979, hereafter
referred to as Part 1) it is demonstrated that circulations resulting from symmetric instability of shear flows
in rotating fluids have a fundamentally mesoscale character in that both ambient rotation and ageostrophic
advection are necessary for instability. The results of Part I are here extended to include the effects of latent
heat release in a conditionally unstable atmosphere, using the formalism of the CISK approach. It is found
that the presence of shear parallel to the wave fronts introduces new wave-CISK modes which are not
strongly dependent on the specified vertical structure of the cumulus heating. The new baroclinic modes
are of mesoscale dimensions, have growth rates proportional to the vertical shear of the ambient flow and
propagate toward the warm air. These modes compare favorably with observations of squall lines within

baroclinic flows.

1. Introduction

The interaction of convective clouds with circu-
lations of larger scale has been an important subject
of research in recent years. While the development
of individual cumulus clouds may depend on the local
convective instability of the large-scale environment,
the character of ensembles of cumulus clouds de-
pends crucially on the presence of circulations of fun-
damentally larger scale. In the tropics, the devel-
opment of ensembles of cumulus clouds appears to
proceed in such a way that the stabilization of the
environment by the convection keeps pace with the
destabilization effected by large-scale processes, as
proposed by Arakawa and Shubert (1974). In some
cases, the convective clouds interact constructively
with larger-scale circulations to produce systems of
great intensity and longevity, as embodied in the
CISK theory of tropical cyclone development (Char-
ney and Eliassen, 1964).

Outside the tropics, many severe convective events
occur within strongly baroclinic flows and may also
be associated with ensembles with lifetimes much
greater than those typical of individual convective
cells. Budget studies (e.g., Fritsch ez al., 1976) as
well as practical forecasting experience show that
these too are supported by circulations of larger
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scale, but very frequently this larger scale cannot be
immediately identified with patterns of vertical ve-
locity associated with traveling baroclinic waves.
Hales (1979) suggests, for example, that there is
often little correlation between vorticity advection at
250 mb and severe storm occurrence.

The failure to identify the development of many
convective systems with quasi-geostrophically de-
scribable fields of vertical motion led immediately
to the proposition that such systems are initiated
and/or sustained by circulations of a scale inter-
mediate between the synoptic and cumulus scales.
The origin and history of the term mesoscale, as
applied to these systems, has recently been reviewed
by Fujita (1981); the definition of the term has
heretofore been based almost solely on observations.
Research on the mechanism of frontogenesis (e.g.,
Hoskins and Bretherton, 1972) suggests a dynamical
significance of mesoscale; viz., that both Coriolis
accelerations and ageostrophic advection are neces-
sary to these circulations. Stated simply, mesoscale
circulations of this type are characterized by a
Rossby number of order unity. In Part I it is shown
that symmetric instability also leads to circulations
which conform to this dynamical definition of me-
soscale.

While the mesoscale organization of convection is
sometimes clearly attributable to such largely inde-
pendent circulations as fronts (Newton, 1950), dry-
lines (Fawbush et al., 1951), and sea breezes (Cotton
et al., 1976), there exist some cases for which it is
difficult to identify a pre-existing mesoscale circu-



May 1982 KERRY A.

lation. Such is the case of pre-coldfrontal squall lines,
which often develop in regions removed from existing
fronts (Fulks, 1951). It is intriguing to consider the
possibility that such mesoscale systems are self-ex-
citing and involve a CISK-like cooperative interac-
tion between the cumulus and the mesoscale.

Investigations of the CISK mechanism have con-
cerned the maintenance of cumulus clouds by mois-
ture convergence associated with either Ekman
pumping, as in tropical cyclones, or with inviscid
waves. Wave-CISK was first proposed by Hayashi
(1970) in order to explain certain features of tropical
cloud bands. The most unstable gravity wave modes
were found by Lindzen (1974) to have horizontal
scales of ~3 km. More recently, the wave-CISK
model has been modified to include the effects of
wind shear (Raymond, 1975), cumulus momentum
transport (Stevens et al., 1977), frequency-depen-
dent cloud heating (Hayashi, 1971) and phase-
lagged heating (Davies, 1979). The latter two effects
were introduced primarily in order to remedy the
lack of scale-selection inherent in wave-CISK mod-
els, in which the growth rates increase monotonically
with wave number. The interpretation of wave-CISK
models is further complicated by the apparently
strong sensitivity of the growth rate of the wave
modes to the vertical profile of heating, which profile
is generally specified a priori. Stark (1976) at-
tempted to correct this deficiency by determining the
cumulus heating in a more rigorous manner, using
the cumulus parameterization of Arakawa and Shub-
ert (1974), only to find that positive growth rates are
possible only when the heating rates are unrealisti-
cally large. The reader is referred to Davies (1979)
“for a concise critique of the present state of wave-
CISK theory.

Based upon the observation (e.g., Newton, 1950)
that middle latitude squall lines are more or less
aligned with the mean cloud-layer shear, we wish to
construct a CISK model for two-dimensional distur-
bances with axes along the shear. The presence of
both shear and background rotation makes possible
the conversion of the kinetic energy of the base state
flow to disturbance energy, and also alters substan-
tially the vertical structure of neutral gravity-inertia
waves. This latter effect is found to have a strong
bearing on the nature of wave-CISK modes.

We proceed in Section 2 to develop a CISK model
for two-dimensional disturbances with axes parallel
to the shear. Solutions of the CISK model are dis-
cussed in Section 3 and compared with observations
of squall lines in Section 4.

2. Wave-CISK in baroclinic flow

In performing the following linear stability anal-
ysis, we intentionally confine ourselves to the most
simple form of the governing equations and boundary
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conditions, viz., the inviscid, hydrostatic, Boussinesq

form of the primitive equations linearized about an

f plane, baroclinic flow with constant vertical and
horizontal shears and constant stable stratification.
The flow is bounded below by a rigid plate and above
by an infinite layer of constant static stability and
no vertical shear. The radiation condition is applied
at the top of this layer.

The basic state is modelled after the observed flow
in the vicinity of squall lines. As in Part I, the zonal
flow in the lower layer contains constant vertical and
horizontal shears

U=Uz+Uy (0<z<H),
while the upper layer has no vertical shear and the
same horizontal shear as the lower layer
U=UH+Uy (H<z<w),
where H is the depth of the shear layer.

The equilibrium density distribution is taken to be
of the form

d1np +alni)

Inp = ,
e 6yy 622

where the horizontal density gradient satisfies the
condition of thermal wind balance

dInp
dy

g = fU,,

where f is the Coriolis- parameter and g the accel-
eration of gravity. The Brunt-Viisild frequency is
defined for a Boussinesq fluid as

3 Inp\'”?
N ( g%, ) ,
and assumes the value N, is the lower layer and N,
in the upper layer. This discontinuity in NV serves to
partially reflect wave energy propagating upward
from the lower layer and is meant to crudely simulate
the tropopause.

The linearized adiabatic Boussinesq equations for
two-dimensional perturbations with axes aligned par-
allel to the shear were developed in Part I and com-
bined into a single equation for the perturbation
streamfunction y defined so that

oW

V= —— =

i
ay’

where v’ and w’ are, respectively, the meridional and
vertical components of the perturbation velocity. If
we now include a diabatic heating term in the lower
layer, the hydrostatic inviscid, Prandtl number unity
limit of the streamfunction equations for the lower
and upper layers become, respectively
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& ) &y aﬂp 9% _ 90*
+ + 20, ——
(6!2 fa f  9yoz 6y2 oy
(0<z< H), (1a)
2 aZ 2
(::2 +fn) ¢+N2‘;‘f 0 (H<z< o) (Ib)
where 7 is the absolute vorticity f — U,, and Q* is

the Boussinesq equivalent of the diabatic heating
rate, multiplied by g/c,T.

‘In order to illustrate the effect of shear on wave-
CISK, we intentionally apply the very simple form
of cumulus parameterization which has generally
been used in the literature, namely, a form which

.relates the cumulus heating to the vertical velocity
at some relatively low level, with the vertical heating
profile specified. It should be recognized, however,
that the phenomenon we wish to investigate is in
many ways different from the tropical convective
systems which have been the subject of most wave-
CISK investigations, with the noteable exception of
the work of Raymond (1975, 1976). Perhaps the
most important distinction is between the thermo-
dynamic environment typical of the tropics and that
associated with severe convection in middle latitudes.
The tropical environment is generally regarded (e.g.,
Arakawa and Shubert, 1974; Lord and Arakawa,
1980) as being on the average slightly unstable to
cumulus clouds of a variety of sizes. The development
of the clouds appears to proceed as a response to the
destabilization by the large-scale flow, as embodied
in the quasi-equilibrium assumption of Arakawa and
Shubert (1974). The thermodynamic environment
in the vicinity-of strong convective storms has also
received a great deal of attention in the literature
(e.g., Lilly, 1975). This environment is typically
highly unstable to large clouds, but by virtue of ex-
cessive dryness in middle levels and/or a low-level
temperature inversion, somewhat stable to smaller
clouds. The development of convection is thus more
dependent on the presence of dynamical mechanisms
which lift the boundary layer air to the level of free
convection, while the persistence of the convective
storms appears to be largely related to the avail-

ability of moisture (Fritsch et al., 1976). Perhaps for _

these reasons, phenomena such as squall lines are
usually relatively isolated in both space and time.
In view of these distinctions, we here choose to
regard the middle-latitude squall lin€ as an isolated
event propagating through a potentially unstable air
mass, rather than regardmg it as a quasi- equilibrium
process. The intensity of the convection is viewed as
depending on the degree of conditional instability
initially present and the rate at which existing mois-
ture is supplied to the storms by the mesoscale flow.
The latter will generally be proportional to the me-
soscale vertical velocity at the top of the mixed layer.

JOURNAL OF THE ATMOSPHERIC SCIENCES

'VOLUME 39

Since the squall line is an isolated event, the potential
energy consumed need not be continuously replaced
by surface evaporation or other processes.

The cumulus heating is therefore specified as a
function of the mesoscale vertical velocity at a level
Zg.

0* = N2QuG(z) % , @)

z=z9

where @, is a constant crudely proportional to the
degree of instability to large cumulonimbus clouds
and G(z) is a specified vertical heating distribution
function. Inherent in the above formulation is the
assumption that the cumulonimbi respond instanta-
neously to the low-level mesoscale upward motion,
which assumption depends on the relative time scales
of the mesoscale and cumulus ‘scale motions. This
places an upper limit on the frequency of the me-
soscale motion, though this limit will be seen to be
relatively uninfluential in this case.

Note also that we allow negative -heating to occur
where the motion is downward at z = z,. As discussed
by Lindzen (1974), this is equivalent to neglecting
the higher harmonics of a more realistic form which
does not allow negative heating. A better cumulus
model would also incorporate the sub-cloud layer
cooling due to evaporation, which is a prominent fea-
ture of middle-latitude convection.

It is convenient to normalize the independent vari-
ables as

z*¥ = Hz _
y* = HRi'’Nf'z"y ¢, 3).
t* = Ri'?f ™t

where the asterisks denote the old dimensional vari- -
ables and Ri is the Richardson number of the lower
layer, N>/ U2

We now seek normal mode solutions of the form

¥ = ¥(z) exp(iKy + at),

.where K is a dimensionless meridional wavenumber
and ¢ is the complex dimensionless growth rate. With
this substitution, (1) becomes

2
v

2 . 22

) dz? dz kv
= ~m*K2QyG(2)¥|,-,, (0<z<1), (4a)

2 2
(RI"/f + 0% “;‘f zjt,” KW = 0
(1<z< o) (4b)

The solution of (4a) is found by the method of
Green’s functions, with the condition ¥ = 0 applied
at z = 0 and a matching condition with the solution
of (4b) applied at z = 1; the solution of (4b) is found
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straightforwardly with the radiation condition ap-
plied at z = oo. The general form of the solution may
be written

7I'2K ZQoe—iroz
r,s[sinrl + % (R - l)e‘i"]

V=¥,
X {[sinr,(l -z)+ % (R- 1)e"'"("’)]
z 1
Xf G(z")e" sinryz'dz' + sinrz f G(z")e™
Vo z

2

0=<z<1),

X [sinrl(l —-z)+ i (R - 1)e_i"(’“")]dz ,}

(5a)
iTK*Qy(R — 1)

2r1s[sinr. +§ (R - l)e’i"]

\I, = ‘I/|Z=zu

1
X f G(z")e"* D sinr z'dz" | ="V
) .

(1<z<w), (5b)

where we have used the definitions
s=Ri"/f + ¢*
ro=7nK/s
ro=ry(l — 5)!/?
ry = nK(N,/N,X(—s)""* X sign[Im(s)].

The quantity R is a complex reflection coefficient for
waves impinging on the tropopause from below, and
is defined

_h +rt+r

R .
r(,—r,+r2

When (5a) is evaluated at z = z,, the equality de-
mands that the expression in large parentheses, eval-
uated z = z,, be equal to unity. This provides the
dispersion relation for s and K.

The vertical distribution of the cumulus heating
may be estimated as a residual of the heat budget
analyzed from observations of cumulus ensembles.
The analyses performed by Nitta (1970), Wallace
(1971), Reed and Recker (1971), and Williams and
Gray (1973) all show that the heating which results
from tropical cumulus convection peaks generally in
the middle troposphere and is more or less symmet-
rically distributed around this region. These observ-
ations have been summarized graphically by Chang
(1976).

Based upon these observed cumulus heating pro-
files, we choose for primary consideration a heating
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profile G(z) = sinzz. This suffers the drawback of
implying a non-zero heating below cloud base, but
we have also taken the static stability to be finite in
this region. We shall later show that the baroclinic
modes satisfying (5a) are relatively insensitive to the
vertical heating profile by obtaining solutions for the
case G(z) = constant. When the heating at the level
z = z, is non-zero, care must be taken to insure that
the heating is not large enough to overcome adiabatic
cooling at this level, otherwise conditional instability
of the first kind will result. With shear present, we
must also be careful to exclude symmetric instability
of the first kind.

With G(z) = sinnz, evaluation of the integrals in
(5a) leads to

QOKZ‘I,lz=z .
¥ = G+ Ky - A:Kz [(s + K?) sin7z (6)
+ 2iK(coswz — -0tz 4 Feminlz=1) ginp 7],
where
rot o= (s + K2 + (ro + 1y + r)e 0t
pe 2K '

(ro + r;) sinr, + ir, cosr,
The associated dispersion relation is
(s + K?)? — 4K? = Qy[K*(s + K?) sinwz, + 2iK>
| ©)

X (coswzy — e~ ot 4 Ferinto~D sinr 75)].

a. Complete solutions of the dispersion relation

The general solution of (7) may be found for spec-
ified values of Qy, 2, V,/N,, and K by searching the
complex s plane for values which satisfy the real and
imaginary parts of (7). Asymptotic solutions may be
found analytically for the special case of large K and
N;/N, — oo, which corresponds to short waves
trapped beneath a rigid lid. These asymptotic solu-
tions are discussed in the Appendix. All solutions
presented are for the case z, = 0.1.

The solutions of (7) fall into two general catego-
ries. When the heating amplitude Q, exceeds about
1.23, the growth rate is a monotonically increasing
function of wavenumber which approaches a linear
function at large K. Reference to the scaling (3)
shows that the Richardson number dependence of
the growth rate drops out when the latter is linearly
proportioned to K. We have therefore reproduced,
at large K, the classical wave-CISK solutions dis-
cussed, for example, by Chang (1976). At suffi-
ciently large K, the solutions violate both the hydro-
static assumption and, more importantly, the assumed
separation of cumulus and mesoscale time scales,
making it necessary to account for the finite response
time of cumulus convection to the large-scale envi-
ronment (Davies, 1979).
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When Q, is less than ~1.23, there exist growing
solutions which are distinctly related to the base state
baroclinity, having growth rates which scale as f
Ri™'/2, and which attain maximum growth at a finite
scale. An example of these solutions, for the case z,
= 0.1, Q@ sinwzy = 0.3, N;/N, = 1.0 is presented in
Fig. 1, which shows the growth rate and phase speed
of the disturbances as a function of wavenumber for
various values of the base state symmetric stability
parameter Rin/f. The dimensional growth rate,
phase speed, and wavelength may be obtained via

o¥=f Ri"”za,
¢* = HNx le
L* = 2NHf ' Ri'?K

Examination of the above scaling and Fig. 1 shows
that the disturbances have a distinctly mesoscale
character. In fact, the Rossby number of the distur-
bance, defined

(8)

Roe & K
~al*  [(n/f) Ri]V?

a
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Fi6. 1. Nondimensional growth rate (a) and phase speed (b)
of baroclinic wave-CISK disturbances as a function of normalized
wavenumber K for the case Q, sinwzo = 0.3, z, = 0.1, and N,/N,
= 1.0. Negative phase speeds denote propagation toward the warm
air. The curves are labelled with values of the symmetric stability
index Rin/f. See text for normalizations.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 39

-QT 1
-0,4‘- |.§-,,r 4
g — 3
c ’» , /1_0_ o Plagli-g g —_—_:T—_' ocm = r_.-.-.—-'l
-7 e
-08r 07s -
/ 50~
o .
) 4
-08p f / 4
f /
~ i / -
’
10k ! /
! / T
—_— ad P W T WU U " " s L
6 -3 8 24 30 36 42 48 54

K
FIG. 2. As in Fig. 1 but for N,/N, = 3.0,

is order unity for values of K and Rin/f at which the
growth rate peaks. The baroclinic wave-CISK modes
are thus dynamically mesoscale. i

Growing solutions exist only when ¢ is negative,
indicating in this case southward propagation, or
more generally, propagation toward the warm air.
The phase speeds converge toward —0.5 as K in-
creases, indicating (see the Appendix) that these
modes have a phase speed and structure similar to
that of free mesoscale gravity waves of total vertical
wavelength H. For low values of the symmetric sta-
bility or for large values of K, the waves are nearly
nondispersive. Larger growth rates are attained when
the symmetric stability is small, especially when K
is small.

When the ratio of stratospheric to tropospheric
stabilities (V,/N,) is increased to refiect the presence
of a tropopause, part of the wave energy is reflected
at the discontinuity. This effect is observed to intro-
duce a multiplicity of new modes, whose growth rates
increase with N,/N,. The two most rapidly growing
modes are depicted in Fig. 2, which pertains to the
same parameters as Fig. 1, except that IV;/N, = 3.0.

Note that the peak growth rate associated with
the long-wave mode in Fig. 2 is nearly the same as
that shown in Fig. .1, but that a second peak now
exists at higher wavenumber. The long-wave peak
is very sensitive to the symmetric stability parameter,
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while the short-wave peak is less so. Where the two
modes overlap, their phase speeds are nearly, but not
exactly, equal.

As one increases the value of N,/N,, the amplitude
of the peak growth rate as well as the wavenumber
of maximum growth of the short-wave mode in-
creases, and the short-wave cut-off also increases in
wavenumber. The character of the long-wave mode
appears to be quite insensitive to the value of IV;/N,.
Figs. 3 and 4 show the growth rates and phase speeds
of the two most unstable modes for the same pa-
rameters as given for Fig. 1, but with N,/N, = 10.0
in Fig. 3, and 1000.0 in Fig. 4. In the latter case, the
tropopause is effectively a rigid lid and the asymp-
totic analysis described in the Appendix is valid at
large K. These asymptotic solutions are shown on the
right-hand side of Fig. 4. Also shown is a third, north-
ward-propagating mode which is present for very
large values of N,/N,.

As indicated by the asymptotic analysis, an infinity
of southward-propagating modes, and a single north-
ward-propagating mode exist when a rigid lid is pres-
ent and K is asymptotically large. The majority of
these modes have very small growth rates and very
high vertical wavenumber components and are not
judged to be of much interest here. When N,/N, is
reduced to the value in Fig. 2, all but a few of the

southward-propagating modes have vanished, and .

the northward-propagating mode has a very small
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F1G. 3. As in Fig. 1 but for N,/N, = 10.0.
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FiG. 4. As in Fig. 1 but for N;/N, = 1000.0. N denotes north-
ward-propagating mode, and asymptotic solutions derived in the
Appendix are represented by arrows at extreme right. Sn corre-
sponds to the nth southward-propagating mode.

growth rate. When N,/N, = 1.0, only a single mode
remains.

We now focus on the solutions when N,/ N, is fixed
at a value of 3.0, which is crudely representative of
atmospheric conditions. Fig. 5 shows the growth rates
of the most rapidly growing modes for the case Rin/

=

——

"

n A . "
4 8 12 18 K 20 24 28 32 6 40

1

F1G. 5. Nondimensional growth rate as a function of the nor-
malized wavenumber for various values of the cumulus heating
magnitude and z, = 0.1, N;/N, = 3.0, and Rin/f = 10.0. Curves
are labeled with values of Q, sinmz,.
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f = 10.0 and z, = 0.1, and for various values of the
cumulus heating. The growth rate when Q, sinwz,
= 0.4 increases without bound with K, since this
heating is supercritical with respect to classical bar-
otropic wave-CISK. As the heating diminishes, the
growth rates decrease and the shortwave mode van-
ishes altogether when @, sinwz, is less than ~0.20.
The longwave peak apparently may exist for values
of @, sinwz, exceeding 0.12.

" For purposes of comparison, the value of Q, can
be crudely estimated from budget studies of cumulus
convection. Here, since we have allowed negative as
well as positive heating, we have overestimated the
total production of wave energy by heating by
roughly a factor of two.

-Reed and Recker (1971) have estimated both the
vertical velocities and diabatic heating rates which
characterize synoptic-scale wave disturbances in the
equatorial western Pacific. In the convectively dis-
turbed regions of these waves, typical values of the
maximum tropospheric diabatic heating and vertical
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velocity at the 1 km level are 6°C day™* and 1 cm

I, respectively. In terms of Q*, and accounting for
the aforementioned factor of two, this is zquivalent
to 1.1 X 107" cm s73. Using (2) and assuming a
tropospheric lapse rate of 3°C km™!, we obtain a
value of 1.14 for Qy and when z, = 0.1, Q, sinwz,
-= 0.35. Since the sub-cloud layer of typical middle-
latitude severe storm episodes is on the average a
little drier than the boundary layer of the tropical
Pacific, one would expect the cumulus heating to be
somewhat less for an equivalent amount of conver-
gence in extratropical systems. This is crudely con-
sistent with the choices of Q, we have used in the
calculations displayed in Figs. 1-4.

b. Eigenfunctions

When s has been determined from (7), the stream-
function may be obtained from (6) and (5b), while
the perturbation values of buoyancy, zonal velocity,
and pressure may be determined from the original
set of linearized equations (see Part I), viz.

. . : / ( . n)'f ? )
B=|————inK¥ + inK 2V, —Ri-
( 2 nr ¥ + inKQ, sinwz V| 0) s i F
0/ 1/2
u=(—]ﬂtRi(j1—z——i1rK\I/)/(s-Ri¥) O<z<1) }, (9a)
' is d¥ .n)” 2
= —_— — R A
pe(v- %2/ ¥
NZ . 1/2 I
= —inK 35 \I//(s -~ ? Rx)
1/2 . .
u=—R1?%¥ (s ;—[’Ri) (l<sz<w) }, (9b)
. 1/2
: nK dz f
where the above quantities have been normalized by )
B* = NH'B upper halves of the troposphere differ dramatically.
! In the lower half, the disturbance strongly resembles
u* =Ri"'*H 'y (10) a neutral mesoscale gravity wave; the wave in fact
o* oNop moves at a speed close to that of a gravity wave
.= PoiVy

The asterisks denote dimensional values and pq is the
mean density. The normalized quantities have the
dimensions of the streamfunction.

Fig. 6 shows the eigenfunctions derived from (9a)
and (9b) corresponding to the shortwave growth rate
peak in Fig. 2, with Q, sinwzy = 0.3, N;/N, = 3.0,
Rin/f = 10.0, and K = 16.5. The eigenfunctions are
displayed as meridional cross-sections spanning one
complete horizontal wavelength and extending from
the surface to z = 1.6. The disturbances propagate
toward the left (south) in these diagrams.

The structures of the instability in the lower and

trapped between the surface and z = ¥ (see Fig. 2).
The buoyancy and vertical velocity are ncarly out of
phase in this region.

Between z = 1/2 and the tropopause (z = 1.0),
the streamfunction slopes back toward the colder air
at an inclination similar ‘to that of the base state
surfaces of constant angular momentum.” In this re-

2 The angular momentum, M, is equal to a cosf| U(y, z) + af
cosf], where a is the mean radius of the earth, Q its angular ve-
locity, 8 the latitude, and U(y, z) is the zonally averaged zonal
velocity. Surfaces of constant M slope with an angle « from the
vertical, where tana = U, 2/ thus M surfaces are nearly horizontal
in baroclinic regions.
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The vertical velocity is positively correlated with
buoyancy and negatively correlated with zonal ve-
locity in this region, indicating both buoyant and

spect, the flow resembles the linear response to dis-
tributed diabatic heat sources in a baroclinic circular
vortex, as originally discussed by Eliassen (1951).

FiG. 7. As in Fig. 6, but for longwave growth rate peak in Fig.2 (K = 6.0). Psi,, = 1.407, U,’= 33.656, B,, = 4.54,
P,, = 1.005.
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shear production of disturbance kinetic energy. We
will return to a more complete discussion of the en-
ergetics in Section 3.

An example of the structure of the long-wave mode
is shown in Fig. 7, which corresponds to the same
parameters as in Fig. 6, but with K = 6.0 (see Fig.
2). The disturbance is somewhat shallower than the
short-wave instability, and less wave energy is evi-
dent in the stratosphere. The streamlines are nearly
aligned with constant angular momentum surfaces
through most of the troposphere; consequently the
zonal velocity perturbations are weak except in the
convergent layer near the surface.

The relative amplitudes of the meridional, zonal,
and vertical velocities and the perturbation buoyancy
and pressure may be estimated using (10). For the
conditions associated with the perturbations shown
in Figs. 6 and 7, and setting N = 1072s™", H = 10
km, T =290 K, f = 107*s' and po = 1 kg m~>, we
find that if the meridional velocity has an amplitude
of 5 m s™! the amplitudes of the other quantities are
as follows:

long wave (Fig. 7) short wave (Fig. 6)

w*=95cms™! 26 cms™!
u*=19ms™! 53ms™!
T* =24°C 4.0°C
p*=18mb 2.0 mb

Under these conditions, the longwave has a period
of 14 h, an e-folding time of 24 h, and a wavelength
of 1050 km, while the shortwave has a period of
6.5 h, an e-folding time of 31 h, and a wavelength
of 380 km.

¢. Solutions for the case G(z) = constant

In order to determine the sensitivity of the baro-
clinic wave-CISK modes to the vertical heating pro-
file, it is useful to compare the preceding results to
solutions for an essentially different heating profile.
We will proceed by examining solutions to the dis-
persion relation found from (5a) for the.case G(z)
= 1.0. The solution of (5a) for this case is

¥ = Qo¥|,-.[1 + e(x sinriz — e7")]

0<z<1l), (11)
where ]
_(rotn+ ry)e™n — et
xX= (ro + ry) sinry + ir, cosr;
The associated dispersion relation is
1 — Qo[1 + e~™™=o(x sinrzo — e7"10)] = 0.  (12)

The solutions of (12) are found to be quite similar
to those of (7) when the peak values of the heating
profile are the same. Fig. 8 shows the growth rates
and phase speeds calculated from (11) for the case
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FIG. 8. As in Fig. 2, but for the case G(z) = constant = 0.971.
This corresponds to the peak value of the heating in Fig. 2.

Q, sinwzy = 0.3, zo = 0.1, and N,;/N, = 3. These
solutions should be compared with those presented
in Fig. 2, which is calculated for the same peak heat-
ing rate. The growth rates and phase speeds are sim-
ilar, but the wavenumbers are generally smaller when
G(z) is constant. Apparently, only the wavelengths
of the baroclinic modes are sensitive to the form of
the heating profile, as long as the maximum heating
rate is held constant.

3. Discussion

The addition of baroclinity to the wave-CISK
problem appears to greatly increase the parameter
range in which unstable solutions are possible. In
addition to the classical barotropic modes, new baro-
clinic modes appear which have mesoscale time and
length scales. In this section we investigate the dy-
namics of these baroclinic modes and discuss the
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possible limitations imposed by the idealized base
state.

a. Wavelengths

When a rigid lid is present (Fig. 4), the behavior
of the growth rates as functions of the wavenumber
resembles that of the classical inviscid symmetric
instability (e.g., Stone, 1966) in that a longwave cut-
off exists at scales such that the Rossby number is
order unity, and the approach to maximum growth
at infinite wavenumber is slow. Part I showed that
the introduction of a small amount of diffusion leads
to a preferred wavelength of Rossby number order
unity in the symmetric instability problem. When
there is an upper rigid lid in the present problem, the
horizontal wavelength would likely scale the same
way in the presence of diffusion in view of the sim-
ilarity of the disturbance structuré and growth rate
behavior to the symmetric stability problem. In the
absence of a rigid lid, however, another scale selec-
tion mechanism independent of diffusion is operative;
namely, the short waves are strongly damped by the
upward propagation of wave energy. Examination of
Fig. 5 reveals that the most unstable modes and the
modes which first appear as the heating is increased
above its critical value have sufficiently long wave-
lengths that diffusion is not likely to be of any im-
portant consequence.

b. Energetics

The kinetic energy equation formed from the lin--

ear perturbation equations (Part I) has the form

%%(F+F+W)

=w'B' - Uu'w' —Up'u/,

(13)

where the overbars indicate averages over one me-
ridional wavelength and over the depth of the fluid.

The first term on the right represents buoyant pro--

duction while the second two terms represent transfer
of kinetic energy from the mean flow to the eddies.
For simplicity, the generation due to horizontal shear
will be neglected in this discussion.

In order to compare the buoyant and shear gen-

eration, we define a flux Richardson number, Ry
w'B’
R;= .
-Uu'w

Using (10), we can write R in terms of the nor-
malized perturbation quantities:

Re[B(i¥)°]
—Re[u(i¥)]’

where the superscript ¢ denotes the complex conju-

R;=Ri
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gate and the wavy overbar indicates a vertical av-
erage fromz = 0 to z = o0.

Since the normalized quantities are generally of
order unity, it can be seen that R; is generally pro-
portional to Ri. This dependence is verified by cal-
culations of R; shown in Table 1. Both the shear and
the heating contribute to energy production, as evi-
denced by a positive Ry, but the shear production is
relatively small except at low Richardson numbers.
There is thus the apparent paradox that while the
growth rates of the baroclinic modes are linearly
proportional to the ambient shear, the shear itself -
contributes little to the total energy producrion. The
role of the shear in this case is indirect, and may be
interpreted as follows:

Consider a linear neutral gravity wave propagating
between two parallel plates in a flow with constant
stratification and no shear. For simplicity, the wave
is taken to represent the fundamental mode with an
amplitude maximum halfway between the plates.
Now suppose that CISK heating is imposed with the
form given by (2), with G(z) = sinwz, noting that
this function happens also to correspond with the
structure of the neutral gravity wave. It can easily
be seen that in this special case, the heating is ev-
erywhere proportional to the vertical velocity, not
just at z = z,. Thus the only effect of the heating is
to modify the effective static stability, and no growth
can occur unless the heating is so strong as to render
the fluid absolutely unstable. As shown by Bolton
(1980), growing propagating solutions can only oc-
cur when the heating is somewhere out of phase with
the vertical velocity.

In the case of the classical barotropic wave-CISK
modes, the upper radiation condition causes the
phase surfaces of the waves to slope with height,
allowing the heating to decouple from the vertical
velocity, except at z = z,. When an upper rigid lid

is applied and G(z) is set equal to sinwz, these modes

disappear altogether (see the Appendix). _
When baroclinity is present, the free wave modes
slope with height whether or not an upper lid is ap-
plied; this slope is represented by the cross-clerivative
term in (1) and is proportional to the vertical shear.
As shown in the Appendix, this allows the heating
to-decouple from the vertical velocity even when an
upper rigid lid is present, and is otherwise apparently

TABLE 1. Values of the flux Richardson number corresponding
to the growth rate peaks in Fig. 2. The calculations ar performed
for 9/f = 1.0, N;/N, = 3.0 and @, sinwz, = 0.3.

Ri K R
1.3 5.0 0.52
1.3 15.0 0.39

10.0 6.0 19.1
10.0 16.5 8.4
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sufficient to allow for positive growth rates at heating
rates less than those required for classical wave-
CISK. The higher-order modes present in the baro-
clinic case occur when the heating associated with
the convergence field of one wave cycle overlaps with
the buoyancy field of another. In the case of the
southward-propagating modes, the phase slope in-
duced by the vertical shear is in the opposite direction
from the slope of the upward-radiating waves in the
stratosphere (Figs. 6 and 7).

The reason for the sensitivity of the longwave baro-
clinic modes to the ambient symmetric stability is
apparent from inspection of Fig. 7, in which it is seen
that the forced flow tends to be aligned with surfaces
of constant angular momentum. As shown in Part
I, the resistence to displacements along such surfaces
is proportional to the symmetric stability.

c¢. Possible effects of critical levels

In the preceding discussion, we have confined our-
selves to an idealized flow in which the shear is ev-
erywhere parallel to the wavefronts. If a component
of shear across the wavefronts exists, the waves may
have one or more critical surfaces and the linear
problem is somewhat less satisfactory. Observations
indicate that at least some squall lines have critical
levels in the upper troposphere (Miller and Sanders,
1980). If such a level exists above the primary region
of convective forcing, there exists the possibility that
a high percentage of wave energy will be reflected,
resulting in higher growth rates of the baroclinic
modes and smaller growth of the barotropic distur-
bances. On the other hand, much of the wave energy
may be absorbed, depending on the nature of the
interaction of the wave with the critical level (Booker
and Bretherton, 1967). A comprehensive treatment
of baroclinic wave-CISK should consider the effects
of critical levels for wave propagation.

d. Other considerations

One of the assumptions underlying the present the-
ory is that the cumulus convection responds instan-
taneously to the mesoscale vertical velocity; this as-
sumption will be acceptable provided the time scale
of the mesoscale wave is large compared to the time
scale of cumulus clouds. This assumption appears to
complicate the interpretation of barotropic wave-
CISK, which has the time scale of a short gravity
wave oscillation. The baroclinic modes have time
scales which are intermediate between the inertial
and the Brunt-Viisild periods and are therefore less
suspect in this regard. For the 'southward-propagat-
ing modes, the time scale over which an individual
parcel will be subject to the mesoscale updraft is

Tm ~ w/a; =~ 27 Ri'2f' K1,

If, from Fig. 2, we use a wavenumber of 16 and f
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= 107* 57!, the above amounts to

7m =~ 1.1 Ri*/? hours.

For typical atmospheric values of Ri, this mesoscale
time scale would appear to be long enough to make
acceptable the assumption that the cumulus respond
instantly to the mesoscale flow.

The e-folding time for the amplification of the
baroclinic modes is approximately

74 ~ Ri'?f g, L.
When ¢, = 0.3, an approximate estimate is

74 ~ 9 Ri'/? hours.

Such a growth rate is rather small, and is in fact
typical of the growth rate of middle-latitude baro-
clinic cyclones. Higher heating rates would result in
somewhat larger growth rates, but the growing
modes would likely be of the barotropic variety. As
discussed previously, the baroclinic modes would
have considerably more influence in the presence of
a wave reflecting region in the upper troposphere or
lower stratosphere. Otherwise, the baroclinic wave-
CISK mechanism would have to be viewed primarily
as a possible means of sustaining a pre-existing me-
soscale gravity wave.

Another problem which arises in applying CISK
theory to atmospheric disturbances concerns the fi-
nite-amplitude nature of convection in the real at-
mosphere. While the theory generally assumes that
cumulus heating will occur for infinitesimal displace-
ments along a surface crudely representative of the
top of the mixed layer, a perturbation of substantial
amplitude is generally needed to lift parcels to their
level of free convection in the atmosphere. For this
reason, such phenomena as tropical cyclones are
rarely observed to arise spontaneously, but rather
grow from an existing circulation created by some
mechanism other than CISK. It would seem reason-
able to suppose that wave-CISK also depends for its
initiation on pre-existing disturbances of crudely sim- -
ilar structure. In the case of the line-symmetric baro-
clinic modes discussed here, frontal circulations and
gravity waves are the first plausible initiating mech-
anisms which come to mind. While it is generally
accepted that frontal circulations may initiate con-
vection, the ability of gravity waves to elicit a con-
vective response is less clear. Some evidence for this
mechanism has been presented by Uccelini (1975),
Miller and Sanders (1980) and others.

Finally, one must question whether the baroclinic
wave-CISK modes are themselves stable. While a
nonlinear analysis is necessary to answer this ques-
tion, certain features of the linear solutions suggest
that the finite-amplitude disturbances may be unsta-
ble. The most obvious of these features is the dis-
tribution of long-line velocity, examples of which
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appear in Figs. 6 and 7. A horizontal cross-section
through the field reveals an alternation of easterly
and westerly flow, which contains inflection points;
such a flow may be unstable to barotropic waves that
would presumably form in the regions of strong vor-
ticity in the middle levels of the updraft and down-
draft and propagate along the line in the direction
of the shear. The existence of this instability also
depends on the ratio of its time scale to that of the
mesoscale wave.

4. Baroclinic wave-CISK and observations of middle-
latitude squall lines

The organization of convection into lmes has re-
ceived considerable attention from investigators of
thunderstorm phenomena. The first systematic in-
vestigation of line thunderstorms in the United States
occurred during the thunderstorm Project of 1946-
47 (Byers and Braham, 1949). Of 56 thunderstorms
observed in Ohio during the project, 32 were imbed-
ded in lines, only six of which were associated with
fronts. Byers (1951) notes that squall lines are gen-
erally more persistent than other forms of convection,
lasting as long as 24 h. A few lines observed during
the Thunderstorm Project contained as many as 50
individually identifiable thunderstorms. Some lines
appear to form along preexisting fronts and then
propagate eastward (Newton, 1950), while others
develop in the warm air well east of cold fronts
(Fulks, 1951).

The striking aspect of the large-scale environment
.of squall lines is the presence of a significant degree
of vertical wind shear together with marked convec-
tive instability. Newton (1950 and 1963), Fulks
(1951), Breiland (1958), Carlson and Ludlam (1968),
Lilly (1975) and others all emphasize the relation-
ship of severe storms and squall lines to vertical wind
shear. Moncrieff and Miller (1976) show that a com-
ponent of shear normal to convective lines may en-
hance the relative inflow and outflow and hence serve
to intensify the system. While tropical squall lines
may be organized in this manner, observations of
squall lines in middle latitudes generally shown that
the lines are more nearly parallel to the shear, at
least in low levels. Squall lines often dissipate after

propagating away from the region of strong shear

(Newton, 1950).

The movement of squall lines has received consid-
erable attention in the literature, with most investi-
gators noting a strong tendency for the lines to move
to the right of the mean winds in the cloud layer
(The observations reviewed were exclusively in the
Northern Hemisphere.) The movement of squall
lines relative to the surface appears to vary between
5 and 25 m s~! with a mean of about 10 m s™'
(Boucher and Wexler, 1961). A squall line studied
by Newton (1950) moved toward the southeast at
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an average speed of 10 m s™', while the line itself
more or less paralleled the flow up to 500 mb. The
severe squall lines of 3-4 April 1974 propagated east-
ward at ~10 m s~ (Miller and Sanders, 1980).

From Fig. 2 and the scaling representec! by (8),
it is clear that the phase speeds of the baroclinic
wave-CISK disturbances will be on the orcler of 15
to 20'm s™' or smaller, dependmg on the depth of
the shear layer. This speed is close to the observed
propagation of squall lines, but is also representative
of a wide variety of propagating hydrostatic gravity
waves. _

Other mechanisms describing the propagation of
squall lines have been proposed. The most frequently
mentioned mechanism involves the horizontal
spreading of rain-cooled air at the surface behind the
updraft. The convergence at the leading edge of the
cold air is thought to continually regenerate convec-
tion. While there is little doubt that this process is
important in squall line systems, Newton (1950)
notes that the advance of rain-cooled air is probably
insufficient to maintain the squall line, primarily be-
cause the air behind the line is not often observed
to move as fast as the line. It is also noted that large
areds of rain-cooled air continue to advance into po-
tentially unstable air long after the squall line has
dissipated. Newton (1950) proposed that the prop-
agation results from the vertical transport of hori-
zontal momentum by convective clouds. The result-
ing geostrophic imbalance gives rise to a circulation
which favors new convective development in regions
downshear and on the warm air side of the shear.
This mechanism is precisely the same as that oper-
ating in baroclinic wave-CISK, although the former
is described in terms of convective rather than me-
soscale momentum transports. Our description dif-
fers from Newton’s only in so far as we have inter-
preted the effect in terms of a horizontal phase shift
of the mesoscale wave with altitude.

There appears to be a remarkable association be-
tween squall lines and strong mesoscale pressure dis-
turbances. These are most noticeable at the surface
when the air adjacent to the ground is stably strat-
ified, but are less prominent for the more typical
circumstance of an adiabatic daytime boundary
layer. As noted by Newton (1950), warn sector
squall lines often extend north of the surface warm
front into a region where the surface air is stably
stratified. In these instances it is sometimes. possible
to detect traveling pressure waves using surface ob-
servations. A remarkable example is discussed by
Brunk (1949), who was able to trace a high ampli-
tude pressure wave as it traveled eastward from
Oklahoma to New England in a region north of a
surface warm front. The amplitude of the surface
fluctuation was as large as 8 mb; this was accom-
panied by strong winds from the east. While the dis-
turbance was originally localized in the vicinity of
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a line of thunderstorms, it thereafter out-paced the
latter as both moved eastward. A tendency of the
pressure disturbance to move faster than the atten-
dant squall line is also noted by Tepper (1950) and
Miller and Sanders (1980); the pressure waves stud-
ied in these cases moved at 25.m s™! and 15 m s7},
respectively. Pressure amplitudes are generally on
the order of several millibars.

In instances where the pressure wave appears to
be coupled with the region of precipitation, a distinct
phase relationship may be noted in which a low pres-
sure area precedes the onset of precipitation by sev-
eral hours. Hoxit er al. (1976) find that these troughs
may be located several tens or hundreds of kilometers
ahead of the convection. The onset of precipitation
is foreshadowed by a pressure rise which is sometimes
abrupt, while the pressure often falls again after the
squall line has passed. These relationships are par-
ticularly well-illustrated in the work of Miller and
Sanders (1980), who note that the pressure and wind
oscillations are consistent with those of an internal
gravity wave, and are thus similar to the fluctuations
produced near the ground by baroclinic wave-CISK.
While the pressure rise which occurs in the vicinity
of the convection is probably largely a consequence
of evaporative cooling of the surface air (Fujita,
1955), the pressure falls preceding the convection by
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several hundred kilometers demand an explanation
in terms of mesoscale processes, as noted by Hoxit
et al. (1976).

As an illustration of the relationship between
strong vertical wind shear and squall lines, a vertical
cross-section was constructed across several of the
severe squall lines which occurred in the central
United States on 3-4 April 1974. Fig. 9 shows is-
entropic surfaces and isotachs of the component of
flow normal to the cross-section, which was con-
structed from four rawinsoundings. Also shown are
a measure of the local symmetric stability and the
positions of two squall lines. It is evident that these
lines were located in regions of relatively small Rich-
ardson number associated with strong vertical wind
shear. Similar cross-sections constructed through
squall lines of the same outbreak have been con-
structed independently by Miller and Sanders (1980)
and are shown in Fig. 10. According to these authors,
the southeasternmost line in Fig. 10b began to dis-
sipate shortly after the time of the cross-section and
as the line moved out of the region of strong shear.
(It should be noted that vertical shear is necessary
to the maintenance of individual severe storms (Lilly,
1975) as well as squall lines.) The lines were observed
to move east- and southeastward at a mean speed of

_Frso
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F1G. 9. Cross-section from Green Bay, Wisconsin to Greensboro, North Carolina
at 0000 GMT 4 April 1974 constructed from four rawinsoundings. Solid lines are
isentropes (K), dashed lines are isotachs of the component of wind into the cross-
section (m s™'), and dotted lines are values of a symmetric stability index n/f
— 1/Ri. Positions of squall lines indicated at bottom.
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F1G. 10. As in Fig. 4 but for (a) 1200 GMT 3 April and (b) 0000 GMT 4 April
1974; wind speeds are in knots. Cross-sections are from Omaha, Nebraska, to
Charleston, South Carolina. Thin vertical lines show the extent of the wind sound-
ings; wind estimates are supplemented by geostrophic estimates near the core. Ap-
proximate positions of squall lines are shown by heavy arrows directed upward from
the ground (from Miller and Sanders, 1980).

S. Conclusions

The addition of vertical wind shear and associated
horizontal temperature gradients to the wave-CISK
formulation has been shown to introduce new wave
modes which have mesoscale length and time scales.
The growth rates of these modes are proportional to
the wind shear and the amount of cumulus heating,
but the characteristics of the waves are relatively
insensitive to the specified vertical structure of the
heating. There exists a multiplicity of baroclinic

modes; the two most important appear to be a me-
soscale mode which is not strongly sensitive to the

- ambient symmetric stability, and a long-wave mode

which is. Both modes propagate toward the warm
air at speeds characteristic of gravity waves confined
to the lower half of the forcing region.

Kinetic energy production by the barocliric modes
is made possible by the horizontal phase shift of the
waves with height. This phase shift, which is due to
Coriolis acceleration acting on vertically displaced
parcels in conditions of vertical wind shear, allows
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the cumulus heating and the wave vertical velocity
to be horizontally out of phase. When the heating
and velocity are out of phase, the buoyancy and ver-
tical velocity may be partially in phase, leading to
kinetic energy generation. The classical barotropic
modes, on the other hand, have heating and vertical
velocity fields which are necessarily in phase hori-
zontally, unless either an upper radiation condition
or a phase-lagged response is included in the for-
mulation. The barotropic modes are highly sensitive
to the vertical profile of cumulus heating.

The symmetric baroclinic wave-CISK modes de-
scribed here are proposed as an explanation of a class
of extratropical squall lines which form in regions
of strong vertical wind shear and which have wave
fronts which are roughly parallel to the shear. The
observed propagation of these lines toward the warm
air and their associated pressure and wind fields are
well in accord with the theoretical predictions of the
linear theory, although the latter fails to account for
the decoupling of the pressure wave and the convec-
tive clouds which is sometimes, though not always,
observed. The predicted growth rates are rather
small when compared with the observations. It is
hoped that some of the discrepancies between the
observed and predicted behavior of squall lines can
be reduced by constructing a model with more re-
alistic initial conditions, including shear across the
wavefronts and with a better convective parameter-
ization which accounts for vertical momentum trans-
port and sub-cloud evaporative cooling.

Acknowledgments. The author wishes to thank
Mimi Dittman of U.C.L.A. and Isabelle Kole of
M.LT. for drafting the figures and Joel Sloman of
M.IT. for assistance in preparing the manuscript.
Figs. 6 and 7 were prepared using the small computer
operated by the Mesoscale Research Section of the
National Center for Atmospheric Research.’

APPENDIX

Asymptotic Behavior for Large X When an Upper
Rigid Lid is Present

The wave-CISK dispersion relation (7) does not
generally contain any easily accessible analytic sol-
utions. A special case arises in the limit of infinite
stratospheric stratification (NV,/N, — o0), which is
analogous to a rigid lid at z* = H. In this case, (7)
reduces to

(s + K?)? - 4K?
= QK 2l:(s + K?) sinwz, + 2iK(cos-;rzo

er1=20) ginp, zo — 7% sinr, (1 — zo))] (A1)
sinr, ’

+

3 NCAR is sponsored by the National Science Foundation.
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Asymptotic solutions of the above may be found for
large K, though it is required by virtue of the hy-
drostatic assumption and the scaling (3) that

K < Ri'*Nf'z7\,

For most atmospheric conditions, the above may be
satisfied even while K is large compared to unity.

The asymptotic solutions when KX is large are found
to fall into two sets. The first can be found straight-
forwardly by assuming that

{S, = —agKk?

(A2)
S,' = bK,

lim

K—o
while requiring that
sinr,| ~ O(1).

In the limit of large X, the real and imaginary parts
of (A1) become, respectively,

1 —a= Q,sinnz,
and

2b(1 - a) = Qo{b Sinﬂ'Zo

sinr,z, — sinry (1 — z
+ 2[0087!’20 + 170 i O):I} s

sinr,
while inspection of the definition of r; shows that

K= T

limr1=W=W.
r

K—w

Solving the above system for a and b, we find

a=1-— Q,sinrz, (A3)
and
( Si'anZo - Sinrl(l - Zo))
= — cosmzy + - ,
sinz, sinr,
with

™
"~ (1 — Qo sinwzo)'/?

r

Using (A2) and the definition of s, we may solve for
the growth rate o, and the frequency o;

o = +a'’K
} . (A4)
o, = Yaba™"/? sign(q;)

- Several aspects of this solution are worth comment-

ing on. When z, = 1/2, b = 0 and no growth is
possible. This is presumably so because the symmetry

- of both the heating and the free modes about z

= 1/2 prohibits the heating from decoupling with
the vertical velocity. Note also that b tends to zero
with Q, as expected. For z; < 1/2, which one would
suspect represents the true atmosphere, b < 0 and
in order to have positive growth rates, o; must also
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be negative. In the large K limit, then, these growing
modes will have positive phase speeds (i.e., toward
the colder air) and the waves will tend toward being
non-dispersive, with a dimensional phase and group
velocity of
a'’?
c* = — NH.

™

The_magnitude of the growth rate will be of order

f /V_R_i, thus no barotropic solutions are possible in
this case. )

The second set of asymptotic solutions for large
K may be found by assuming that |sinr,| is of order
K7'in (A1). This condition may be realized if we
take ' ‘

1
S, = - e K2+
lim n
k= S,‘ = CK,
where ¢ is an undetermined parameter of order unity,

and n is a positive integer. Asymptotic expansion of
r, leads to .

(AS5)

4xn’
K

rn=2mn+i c

4rnie on’
+ X2 - 121r;—1-<-2~

Thus |sinr,| will be at most of order K~'. We now
proceed to expand (A1) in powers of K and solve
the real and imaginary parts separately. After
some manipulation, the two parts may be solved for
cand ¢ ' '

) + O(K?).

Qo sinwz 0

1 1 .
7rn3(1 - m)(l T o s1n1rzo)
and '

x*n® [ 2 1
e=— =1 -3
sin2wnzo LQo 4n

— c¢sinwzy — 2 coswzy + 3

c= (A6)

sin2nwz,
nmw

| A T
+2(1 - 220)(cos2n1rzo + —5—13-';’?)] . (A7)

Using (AS), (A6), and the definition of s, we may
solve for the growth rate and frequency:

K
o; = +—
lim 2n (A8)
k=x | g, = nc sign(s)).

Inspection of (A8) and (A6) shows that when Qq

sinwzo < 3/4, the growth rates are greatest when n.

= 1; this value will be assumed henceforth.
This set of asymptotic solutions has the same gen-
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eral properties as the first set, with the important
distinctions that the frequency is positive and the
phase speed is negative, when z, < 1/2, and the
growth rates are always numerically larger. These
disturbances propagate toward the warm air at a
dimensional phase speed of

—NH
» 27
which is smaller in magnitude than the speed of the
northward propagating modes. We also note that this

phase and group velocity is independent of the mag-
nitude of the heating, unlike the northward-moving

c* =

 waves. For typical tropospheric conditions, ¢* will

be ~15 m s~! for H = 10 km.

Since |sinr,| is of order K !, its value asymptoti-
cally approaches zero for large K. Since the condition
sinr; = 0 yields the dispersion relation for free waves,
it appears that the southward propagating modes
represent a resonance between internal gravity waves,
modified by the vertical shear, and the cumulus heat-
ing. In this case, the resonant free wave is not the
gravest vertical mode; it is rather the n = 2 mode.

Computation of the asymptotic solutions lends cre-
dence to the numerical solution of the full dispersion
relation. In Fig. 4 the asymptotic solutions for the
northward-propagating mode and the four most ra-
pidly growing southward-propagating modes are
plotted on the right-hand side of the diagram. The
complete numerical solutions successfully converge
with the asymptotic solutions at large K.
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