
Plume patterns in radiative–convective flows

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 New J. Phys. 5 106

(http://iopscience.iop.org/1367-2630/5/1/106)

Download details:

IP Address: 89.201.228.79

The article was downloaded on 29/05/2010 at 05:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/5/1
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Plume patterns in radiative–convective flows

A Parodi1, K A Emanuel2 and A Provenzale1,3,4

1 CIMA, University of Genoa, Via Cadorna 7, Savona, Italy
2 EAPS-MIT, Cambridge, MA 02139, USA
3 ISAC-CNR, Corso Fiume 4, 10133 Torino, Italy
E-mail: antonello@cima.unige.it

New Journal of Physics 5 (2003) 106.1–106.17 (http://www.njp.org/)
Received 30 April 2003, in final form 11 July 2003
Published 5 August 2003

Abstract. We study the dynamics of a simplified model of atmospheric
convection. The model represents a layer of dry air kept in statistically stationary
radiative–convective equilibrium. We discuss the behaviour and the spatial
organization of the pattern of convective plumes that emerge in the system, and
analyse the intermittency properties of the heat flux field.
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1. Introduction

Mesoscale eddies in the ocean, hurricanes in the tropical atmosphere, cool downdrafts in the
ocean thermohaline convection, and strong precipitating updrafts in atmospheric convection
are all examples of the intense, localized coherent structures that characterize the dynamics of
turbulent geophysical flows.
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The presence of coherent structures leads to a strong spatio-temporal intermittency of
geophysical turbulence, and to an irregular alternation between the localized, high-energy
spots of intense dynamical activity—the coherent structures—and the diffuse, more quiescent
background. This is certainly the case for vortex-dominated systems in the ocean (e.g., [22, 23]
and references therein) and for turbulent convection at large Rayleigh number (e.g., [31, 35]).
A spectacular example of intermittent turbulent convection in the atmosphere are the tall
cumulonimbi found at the tropics. These cloud towers occupy only a small fraction of space,
and are associated with strong updrafts. The downdrafts are much weaker, and occupy the clean
air between the cloudy and precipitating updrafts (see, e.g., [12, 18]).

In this paper, we focus on the behaviour of convective updrafts and on the intermittent
dynamics of atmospheric convection. Atmospheric convection is, of course, very complicated.
If we try to rationalize the behaviour of convective precipitation in terms of model equations,
we have to turn attention to the dynamics of moist, precipitating, radiatively cooled convection
(see, e.g., [12]). When the problem is approached in its full flavour, one has to cope with cloud
microphysics, droplet dynamics, turbulence parametrization schemes, moist thermodynamics
and phase changes, and the complexity of the models may grow beyond reach.

Another avenue is based on keeping the description as simple as possible, at the cost of
building only a deformed image of the phenomenon under study. From this point of view, one
could ask what is the simplest model that captures some of the essential aspects of atmospheric
convection. In this paper we look for such a minimal model and discuss a simple setting
that describes the basic properties of atmospheric convection. The description is based on a
classic model introduced by Prandtl [24], which represents a layer of dry air kept in statistically
stationary radiative–convective equilibrium. Surprisingly, this model has been very little studied
in atmospheric dynamics since then, and, to our knowledge, the full reference list is composed
of the works of Deardorff and Islam et al [11, 19] and Robe and Emanuel [27]. Interestingly, this
model is mathematically equivalent to the problem of a fluid layer that is cooled from above and
is internally heated, as is thought to be the case for the Earth’s mantle [7, 10, 26, 28, 29, 33, 34].
On the other hand, the value of the Reynolds number considered in mantle convection studies
is usually much smaller than that for the atmosphere, and the value of the Prandtl number for
mantle convection is definitely larger than that for air (Pr = 0.7 for atmospheric convection
while Pr → ∞ for mantle convection).

Before delving into the Prandtl convection problem, we mention a basic difference between
pattern formation theory, as it is normally understood and to which this focus issue is devoted,
and the study of strongly nonlinear structures such as those discussed in this paper. Traditionally,
pattern formation refers to a regime that is little beyond the first linear instability of the system,
and it can, in many circumstances, be described by a weakly nonlinear expansion of the full
equations. Examples are abundant: in the realm of convection we cite the emergence of rolls in
Rayleigh–Benard (RB) convection at values of the Rayleigh number just above critical [5, 21].

In contrast, coherent structures such as vortices and convective plumes (e.g., [4, 20, 22]) or
spatio-temporal intermittency such as that of rainfall fields (e.g., [15] and references therein),
emerge in the strongly nonlinear regime. As a consequence, their understanding does not gen-
erally follow from weakly nonlinear expansions of the equations of motion. The systematic de-
scription of these strongly nonlinear structures is far less advanced than pattern formation theory.
Much of the work on strongly nonlinear coherent structures is experimental, observational and
numerical, and we are still lacking a unified view of structure formation. Perhaps, also, there is
not a unified view of strongly nonlinear structures, and each system has its own avenues and rules.
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2. The Prandtl problem

We consider the setting introduced by Prandtl [24], which represents a layer of dry air that is
radiatively cooled throughout its interior and is heated from below by a turbulent heat flux from
a ground surface kept at constant temperature by solar radiation.

In equilibrium, the incoming solar radiation at the top of the atmospheric layer matches the
total outgoing radiation. Transfer of heat from the ground to the overlying fluid destabilizes the
latter, resulting in convection. The air is supposed to be transparent to the incoming short-wave
solar radiation, while it absorbs and re-emits the long-wave radiation received from the ground.

The dynamics of this simplified system can be described by considering the details of the
entropy balance [13, 14]. Starting from the first law of thermodynamics, one obtains

cp
d ln T

dt
− Rd

d ln p

dt
= Qrad

T
+ sirr (1)

where cp is the heat capacity at constant pressure, Rd is the gas constant for dry air, p is pressure,
sirr represents irreversible entropy sources and Qrad is the radiative cooling rate. By averaging
equation (1) over the entire domain and over a long enough time to average out statistical
fluctuations, one obtains

〈sirr〉 = −
〈 Qrad

T

〉
(2)

where the symbol 〈·〉 indicates an average over three-dimensional space and time. In statistical
equilibrium, the heat flux entering from the bottom boundary is balanced by the radiative
cooling in the bulk of the fluid. However, the heat input and output take place at two different
temperatures, and this should be taken into account when evaluating the average of dQrad/T in
equation (2). This temperature difference leads to the expression

〈sirr〉 = Fs

( 1

〈T 〉 − 1

Ts

)
(3)

where Fs is the net flux at the surface (and also the net radiative cooling in the fluid), Ts is the
surface temperature (the temperature at which the heat enters the system) and 〈T 〉 is the average
temperature at which radiative cooling occurs5.

Assuming for the moment that the dissipation of kinetic energy is the dominant irreversible
entropy source, the left side of equation (3) is the average of the dissipative heating divided by
temperature. In statistical equilibrium, dissipation of kinetic energy must be equal to the rate of
conversion of potential to kinetic energy, 〈wT ′〉, and thus we can write

1

Tdiss
〈wT ′〉 ∝ Fs

( 1

〈T 〉 − 1

Ts

)
(4)

where 〈wT ′〉 is the average buoyancy flux and Tdiss is the average temperature at which kinetic
energy is dissipated (again we have confused the average of the inverse temperature with the
inverse of the average temperature). This expression reveals that the average buoyancy flux is
determined by the energy input into the system, and it can be interpreted as a thermodynamic
efficiency. From the estimate of 〈T 〉 for the atmosphere and assuming for simplicity that

5 The correct average is 〈1/T 〉 instead of 1/〈T 〉. However, at the level of this description the difference between
these two quantities is small and we can use the simplest inverse of the average temperature instead of the average
of 1/T .
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Tdiss ≈ 〈T 〉, one can estimate an appropriate scale for the buoyancy flux in the system. This scale
is proportional to the radiation absorbed by the surface and to the difference between the surface
temperature and a mean temperature of the free atmosphere. Convection thus works as a heat
engine, that converts the heat absorbed at the surface into mechanical work of the fluid, with an
efficiency determined by the difference between the input and output temperatures. No work is
done on the environment, rather the mechanical energy is dissipated locally and is turned back
into enthalpy.

3. The Prandtl problem for a layer of finite depth

The original formulation of the Prandtl problem refers to a domain that is infinitely extended
in the horizontal plane (horizontal coordinates are herein denoted by x and y), and is semi-
infinite along the vertical coordinate z: the domain is bounded from below by a rigid surface
at z = 0 and it extends to z → ∞. For the sake of simplicity, here we constrain the vertical
extent of the system, and consider a fluid layer with depth D = H + h confined between two
horizontal plates. The domain is subdivided into two distinct sublayers: the first, with height
H , represents the troposphere and it is uniformly cooled at a constant rate, Q0. The second
layer, with height h, represents the stratosphere and has no net radiative cooling (i.e. the upper
layer is assumed to be either transparent to radiation or in a state of local radiative balance).
The choice of a constant tropospheric cooling is consistent with measurements of atmospheric
radiative fluxes, which provide approximately constant vertical profiles of radiative cooling rates
in the troposphere [32].

The governing equations for this system are the momentum,energy and continuity equations
which, for an incompressible fluid and in the Boussinesq approximation, are written as

∂u

∂ t
+ u · ∇u = − 1

ρ
∇ p + g

ρ

ρ0
+ ν∇2u (5)

∂T

∂ t
+ u · ∇T = κ∇2T − Qrad

cp
(6)

∇ · u = 0 (7)

where ρ = ρ0[1 − α(T − T0)] is the fluid density, T is temperature, u ≡ (u, v, w) is velocity
and κ , ν and α are, respectively, the thermal diffusivity, kinematic viscosity and volumetric
coefficient of thermal expansion of the fluid. The vertical velocity component is w and we have
linearized the equation of state around the reference temperature T∗ and the reference density
ρ∗ ≡ ρ(T∗), consistent with the Boussinesq approximation6.

The cooling term is defined as −Qrad/cp in the temperature equation, where Qrad = Q0

for 0 ≤ z ≤ H and Qrad = 0 for H ≤ z ≤ D. For the velocity field, rigid (no slip) boundary
conditions are used on both horizontal boundaries7. For the temperature field, flux boundary
conditions are imposed:

6 This is a significant simplification with respect to the properties of the real atmosphere. It would have been more
realistic to retain the dependence of density on pressure, and use the so-called anelastic approximation instead of the
Boussinesq approximation. On the other hand, for motions whose vertical extent does not exceed the scale height
of the atmosphere, the error due to the use of the Boussinesq approximation is probably not worrisome, given the
heuristic nature of the model adopted here.
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Fbottom = −κ
∂T

∂z
= c(Ts − T |z=0) for z = 0 (8)

∂T

∂z
= 0 for z = D (9)

where Ts is a constant reference soil temperature (determined by the incoming solar radiation
and by the soil albedo) and c is a turbulent velocity scale associated with the heat flux from the
bottom boundary. The heat flux at the lower boundary of the fluid layer is proportional to the
difference between the reference temperature of the soil, Ts, and the temperature of the lowermost
layer of air, T (z = 0). This condition at the lower boundary corresponds to assuming a rough
lower plate. At the upper boundary, we impose insulating (zero flux) boundary conditions for
the convective (turbulent) and conductive heat fluxes, while the radiation emitted by the lower
layers is allowed to escape to outer space: we assume the system to be topped by an insulating
but perfectly transparent plane. Periodic boundary conditions are used along the two horizontal
directions. The ratio of the horizontal size of the periodic domain, L , to the vertical extent of
the model troposphere, H , defines the aspect ratio of the system.

The above equations are made dimensionless by using the Prandtl scaling:

x̃ = x/H

t̃ = Ut/H

ũ = u/U

p̃ = p/ρ0U 2

T̃ = (T − Ts)/�T

where

U =
(gQ0 H 2

cpTs

) 1
3

(10)

�T = U 2Ts

gH
. (11)

Note, in particular, that the timescale used in the non-dimensional equations is the convective
overturning scale, τ = H/U , which defines the natural timescale for this problem. We have
also assumed that α ≈ 1/T ≈ 1/Ts.

In dimensionless variables, the equations of motion become

∂u

∂ t
+ u · ∇u = −∇ p + T k̂ +

1

Re
∇2u (12)

∂T

∂ t
+ u · ∇T = 1

RePr
∇2T − θ(z0 − z) (13)

∇ · u = 0 (14)

7 The no-slip boundary condition on the lower plate has a natural motivation as the lower boundary represents the
ground. On the upper plate, the choice of the velocity boundary condition is more artificial, as there is no upper
plate in the atmosphere. On the other hand, the dynamics in the upper layers of our model is much less intense
than in the lower layers. For this reason, the upper boundary condition on velocity is less important. Here we have
imposed a no-slip condition also on the upper plate. The use of a no-stress condition on the upper boundary does
not significantly alter the results.
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where θ(ζ ) = 1 for ζ ≥ 0 and θ = 0 otherwise, z0 = 1 is the dimensionless height of the model
tropopause and we have dropped the tilde decoration.

The boundary conditions for the velocity and temperature fields become

u = v = w = 0 for z = 0 and z = 1 +
h

H
∂T

∂z
= c

U
RePrT for z = 0

∂T

∂z
= 0 for z = 1 +

h

H

and the dynamics is governed by three non-dimensional parameters:

• the Reynolds number, Re = U H/ν;

• the Prandtl number, Pr = ν/κ;

• the ratio c/U between the velocity scale of the turbulent heat flux at the bottom boundary
and the velocity scale of the convection.

The dimensionless equations are numerically integrated using a mixed spectral–finite-difference
technique. In this approach, Fourier decomposition in both planar directions is associated with a
finite difference scheme in the vertical direction. An explicit third-order Runge–Kutta integration
scheme is used for time advancement.

Before closing this section, we note that the Prandtl convection setting discussed here is
mathematically equivalent to the convection of a fluid layer that is heated internally and is cooled
from above, provided we change the sign of the acceleration of gravity. The dynamics of an
internally heated layer is of relevant interest for the study of mantle convection,and several results
are available on this system (e.g., [7, 10, 26, 28, 29, 33, 34]). In the case of mantle convection,
however, one is usually faced with relatively low values of the Reynolds number and (infinitely)
large values of the Prandtl number, while for atmospheric convection one has Pr = 0.7 and
Re → ∞. In addition, for atmospheric convection the correct bottom boundary condition is on
the flux, while most studies of mantle convection cope with a fixed temperature on the upper plate.
Finally, in atmospheric convection one has to cope with the difference between the troposphere
and the stratosphere, and the problem becomes one of penetrative convection.

4. Plumes in Prandtl convection

We consider one specific example of statistical radiative–convective equilibrium, for Re = 100,
Pr = 0.71 and c/U = 1.5 × 10−3. The integration domain has size 10 × 10 × 1.5 and a grid
with 128 × 128 × 145 mesh points. Note that the above value of Re should be interpreted as
an ‘eddy’ value: the dissipation and the thermal conductivity represent turbulent eddy quantities
rather than molecular values. The simulation discussed here could thus be interpreted as a LES
(large eddy simulation) with the simplest possible closure scheme (i.e. eddy viscosity) rather
than a DNS (direct numerical simulation).

To provide physical scales for this problem (see figure 1), we fix the dimensional height of
the troposphere as H = 10 km and the turbulent velocity scale at the bottom as c = 10−2 m s−1.
Thus, the mid tropospheric level in the model, z = 0.5, corresponds to an altitude of about 5000 m
above the ground. Since the aspect ratio of this simulation is 10, the value of H implies that
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Figure 1. The setting of the (modified) Prandtl problem, as implemented in this
work.

the horizontal size of the simulation domain is L = 100 km. With these choices, the convective
velocity timescale is U ≈ 6.7 m s−1 and the convective timescale is τ = H/U = 1500 s.

The total average heat flux in the system, H̄, is defined as the sum of the average convective,
conductive and radiative heat fluxes, i.e.

H̄ = H̄t + H̄cond + H̄rad (15)

where the average convective (turbulent) heat flux is

H̄t = wT ′ (16)

and the average conductive heat flux is

H̄cond = − 1

RePr

∂ T̄

∂z
. (17)

Here T ′ = T −T (z) is the temperature perturbation and T (z) is the average temperature at height
z. The overbar indicates average over horizontal directions and over time. In dimensionless
variables, the average radiative heat flux is

H̄rad =
∫ z

0
θ(1 − z′) dz′. (18)

This gives H̄rad = z for 0 ≤ z ≤ 1 and H̄rad = 1 for 1 < z ≤ 1 + h/H . Since the total average
heat flux in the system is constant along the vertical, the ‘kinetic’ portion of the average heat
flux, H̄t + H̄cond, displays a linear decrease with height in the model troposphere and it becomes
zero close to the model tropopause. Outside the bottom boundary layer, the contribution from
the convective heat flux dominates over heat conduction.

When statistical radiative–convective equilibrium is achieved, the convecting fluid is
separated into two different regions: a thermal boundary-layer close to the surface, where the
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average temperature decreases rapidly with height, and the well-mixed fluid in the bulk of the
model troposphere, where the average temperature becomes independent of height.

Physically, the heat flux from the bottom tends to increase the temperature of the troposphere,
and radiative cooling removes the heat coming from the lower layers. In the absence of
convective mixing, one would obtain a stationary solution with the average temperature
decreasing quadratically with height. The presence of convection mixes the fluid and makes
the average temperature homogeneous, similarly to what happens in RB convection at large
enough Rayleigh number. Interestingly, approximately isothermal conditions persist in most of
the model stratosphere. The isothermal profile is indeed a solution of the stationary problem for
a transparent fluid layer with fixed bottom temperature and insulating upper boundary. Thus,
the temperature of the model stratosphere adjusts itself to the temperature of the uppermost
layer of the model troposphere, and an approximately constant average temperature is observed
throughout the fluid above the bottom boundary layer. A weaker boundary layer is present close
to the upper plate.

Figure 2 shows the average vertical temperature profile and the vertical profile of the kinetic
part of the total heat flux. Both profiles are obtained by averaging over the horizontal and over
a number of time steps corresponding approximately to 30 convective times, τ .

To illustrate the structure of the convective overturning, in figures 3–5 we show horizontal
cross sections of the vertical velocity,w, of the temperature perturbation, T ′, and of the convective
heat flux, Ht = wT ′, at three reference heights. The horizontal cross sections are taken at
z = 0.08, in the bottom boundary layer, at z = 0.5, in the middle of the model troposphere, and
at z = 1.25, above the model tropopause.

In the bottom boundary layer, the convection is organized in lines that are approximately
straight and form polygonals. In the core of the model troposphere, a characteristic spoke pattern
of rising motions is present. The hubs of the spoke pattern are the centres of most energetic
ascents. Although some elongated features are still present at z = 0.5, there is a predominance of
isolated plumes that springs from the hubs of the spoke pattern. The remaining part of the domain
is characterized by cold air that is slowly subsiding. The plumes that survive the journey to the top
of the model troposphere penetrate into the stratosphere, causing entrainment. This penetration
is quite weak, explaining the characteristic total heat flux profile shown before. A vertical
cross section (figure 6) confirms that the convective heat flux is dominated by a few ascending
structures surrounded by slowly subsiding air, and that only the more intense plumes penetrate
into the model stratosphere. Note, also, that the more intense structures identified in the heat flux
field are associated with the largest values of the vertical velocity field. Interestingly, a similar
organization of large-scale convective elements over the intersection of surface convergence
features has been detected in studies of mesoscale storm organization [9].

The spatial organization observed in the Prandtl model is quite different from the typical
behaviour of RB convection. In the latter, the intrinsic up–down symmetry of the system produces
both hot updrafts and cold downdrafts, which on average occupy the same portion of space. The
collision of cold downdrafts with the hot bottom boundary layer (and, vice versa, the collision
of hot updrafts with the cold top boundary layer) is a crucial aspect of plume dynamics in RB
convection (see, e.g., [8, 30, 31]). In the Prandtl setting, the presence of radiative cooling and
the difference in the upper and lower boundary conditions break the up–down symmetry. There
are no cold downdrafts impinging on the bottom boundary layer, and the hot updrafts lose most
of their strength before reaching the top boundary. As a result, the overall field is dominated
by a few intense updrafts of warm air that hardly penetrate the model stratosphere, and by a
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Figure 2. Time-averaged temperature profile (blue curve) and time-averaged
profile of the sum of the convective and conductive heat fluxes (purple curve). The
(non-dimensional) temperature profile has been divided by the (non-dimensional)
soil temperature Ts/�T .

general slow subsidence of cool air, similar to what is observed in atmospheric convection. For
this reason, we believe that the Prandtl model is one of the simplest settings that includes the
essential elements of atmospheric convection.

5. Intermittency of the heat flux field

In the following we explore some of the elementary statistical properties of the heat flux field,and,
in particular, its intermittency properties. Figure 7 shows the horizontal power spectrum, P(k), of
the heat flux field at z = 0.5, obtained as an average over 30 convective timescales. Here we show
the spectrum along the x direction; owing to isotropy the spectrum along y is approximately the
same. The spectrum displays a steep decrease at small wavelength (the straight line in the figure
shows a power-law decrease P(k) ∝ k−5 for comparison), and a flat plateau at larger scales. The
transition happens at a scale of about 0.1L , corresponding to about 10 km. This value marks
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Figure 3. Horizontal cross sections of the vertical velocity (top left panel), of the
temperature perturbation (top right panel), and of the convective heat flux (bottom
panel) at z = 0.08, in the bottom boundary layer.

the transition from the scale of the individual plumes, whose lateral size does not exceed the
height of the troposphere, and the dynamics at larger scales, dominated by an approximately
homogeneous distribution of individual plumes. Compared with the atmosphere, this version of
the Prandtl model lacks large-scale organization (such as that generated by mesoscale complexes,
squall lines, or cyclonic circulations) as well as the clustering of the individual plumes into plume
complexes (e.g., the small mesoscale areas observed in convective precipitation, see [1]).

Figure 8 shows the probability density function (PDF) of the convective heat flux intensity at
level z = 0.5, obtained from an average over 30 convective timescales. The PDF of Ht confirms
the strongly skewed nature of the heat flux field, with an elongated tail for large positive values of
Ht . This is to be contrasted with the case of RB convection, where the heat flux has a symmetric
distribution. The long positive tail of the PDF of Ht is due to the intermittent nature of the heat
flux field, and it is associated with the predominance of the strong convective updrafts that carry
most of the heat flux from the lower levels to the top of the model troposphere.
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Figure 4. Horizontal cross sections of the vertical velocity (top left panel), of the
temperature perturbation (top right panel), and of the convective heat flux (bottom
panel) at z = 0.5, in the core of the model troposphere.

The spectrum of generalized fractal dimensions provides further information on the
intermittency of the heat flux field. Consider a two-dimensional field, 
(x, y), discretized
on a regular grid. First, we need to define a measure, ε(x, y), on this field (in the case of a
positive-definite field, the measure can be the field itself, i.e. ε = 
). We define the integral
of the measure, µ j(λ), as the integral of ε on an area with linear size λ, centred on the point
(x j , y j). We define the partition functions, Z(λ, q), as

Z(λ, q) =
∑

j

µ j(λ)q, (19)

where q ≥ 0. For random fields with scaling properties, in the limit for λ → 0 one has

Z(λ, q) ∼ λτ(q). (20)

For ‘physical’ fractals, the power-law behaviour extends only on a finite range of values of λ, and
the exponent τ(q) is usually obtained by a least-squares-fit of log Z versus log λ in the scaling
range. The generalized fractal dimensions, D(q), are obtained from τ(q) as [17]
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Figure 5. Horizontal cross sections of the vertical velocity (top left panel), of the
temperature perturbation (top right panel), and of the convective heat flux (bottom
panel) at z = 1.25, in the lower model stratosphere.
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Figure 6. Vertical cross section of the convective heat flux field at y = 0.
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Figure 7. Horizontal power spectrum, P(k), of the heat flux field at z = 0.5. The
line indicates a power law k−5 for comparison.
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Figure 8. PDF of the convective heat flux at z = 0.5.

D(q) = τ(q)

q − 1
. (21)

For q = 0, one finds the box-counting dimension, D(0). This represents the fractal
dimension of the support where the field is different from zero. For q = 2, one finds the
correlation dimension, D(2). Fields characterized by D(q) = D(0) for any q are said to possess
simple scaling or to be ‘monofractal’, while scaling fields characterized by D(q) < D(q ′) for
q > q ′ are said to possess anomalous scaling, or to be ‘multifractal’. Multifractality is a sign of
intermittency, i.e. of the fact that higher-order moments are more rare and more intense than for
a Gaussian field.
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Figure 9. Vertically- and time-integrated warm updraft field obtained from the
Prandtl model.

To apply the box-counting method to the heat flux we need first to define a positive measure
on the field. In the following, we focus on the properties of the upward flux of warm air, a
measure that is dominated by the behaviour of the intense convective plumes that spring from
the lower boundary layer and reach the tropopause. In the Prandtl setting, this flux represents
the main component of the turbulent heat transport from the warmed ground toward the cooler
upper atmospheric layers.

Since the plumes display remarkable coherence along the vertical direction, and a very
limited tilt of their axis (owing to the lack of vertical shear in this model), we consider the
time- and vertically-integrated upward flux of warm air, ε, as

ε(x, y, t) =
∫ t

t−�t
dt

∫ zTP

zB

H+
t dz (22)

where �t is the cumulation time, zB is the height of the bottom boundary layer, and zTP is the
height of the model tropopause. The upward flux of warm air, H+

t , is defined as that portion of
the convective heat flux, Ht = wT ′, which is characterized by w > 0 and T ′ > 0.

Figure 9 shows one snapshot of ε(x, y, t) obtained from the Prandtl model, using—in
dimensional variables—�t = 15 min, zB = 2 km, and zTP = 10 km. (Choosing other
cumulation times between about 2 and 30 min provides analogous results.) The field of updrafts
is characterized by localized, intense peaks separated by large areas of low or zero activity and
connected to each other by lines of lower flux intensity. Although the present version of the
Prandtl model does not contain any moisture, it is tempting to interpret these intense plumes as
a dry analogue of the convective updrafts that are at the origin of strong rainfall cells.

Figure 10 shows the set of generalized fractal dimensions for the measure ε(x, y); the results
are obtained by averaging the generalized dimensions of the individual fields over 30 convective
times. The positive heat flux field in this radiative–convective system displays anomalous scaling
and intermittency, as indicated by the fact that the generalized dimensions D(q) decrease for
increasing moment order q. We recall that fields of intense convective precipitation also display
anomalous scaling (e.g., [15]). The results reported here suggest that the origin of rainfall
intermittency may reside in the dynamical properties of the field of convective updrafts. Further
analyses of simplified moist convective systems will hopefully elucidate this issue.
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Figure 10. Generalized fractal dimensions for the (vertically- and time-
integrated) warm updraft field obtained from the Prandtl model.
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Figure 11. Average radial profile of the warm convective updrafts produced by
the Prandtl model. The dashed curve shows a Gaussian profile for comparison.

A final point concerns the profile of the individual convective updrafts in the Prandtl problem.
In figure 11 we show the average radial dependence of ε in convective plumes. For each of the
intense updrafts present at a given time, we computed the shape of the field ε(x, y) around the
local maximum (that defines the centre of the plume). The different updrafts were normalized
to having the same integral and the same radius, and then averaged. A further azimuthal average
around the centre of the updraft provides the mean profile. The average profile is closer to an
exponential than to a Gaussian, again in agreement with what has been found for the shape of
convective precipitation cells [16].
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6. Summary and discussion

Convection plays a central role in pattern formation theories. The concept of pattern immediately
brings to one’s mind the picture of hexagonal convection rolls, and the experiments of Benard [2]
are taken as paradigms of pattern formation studies. Similarly, the theoretical investigation of
Rayleigh [25] paved the way to linear stability studies and to the mathematical understanding of
the instabilities that generate patterns.

Since then, the convective motion of an incompressible fluid layer bounded by two solid
horizontal surfaces kept at constant temperature—now called ‘RB convection’—has become an
evergreen of pattern formation. One of the reasons for which the RB setting has received so much
attention is that its linear stability structure is quite simple, and so are the subsequent weakly
nonlinear expansions. For this system, the entire sequence of transitions from linear instability, to
weakly nonlinear roll structures, to pattern dynamics, spatio-temporal chaos, routes to turbulence,
and finally fully developed turbulence has been thoroughly investigated: see e.g. [6, 31] and [3]
for recent (and almost recent) reviews of RB convection.

As a model of atmospheric convection, however, the standard RB setting is not especially
appropriate. One reason is that this configuration is up–down symmetric, a fact that is rarely
observed in the oceans and the atmosphere where the upper and lower boundary conditions are
usually different. Another important point is that most implementations of RB convection deal
with fixed-temperature boundary conditions, while in most atmospheric situations one has to
cope with boundary conditions on the heat flux rather than on temperature. Other effects can
play an important role, such as rotation, the presence of dissolved salt in sea water, and the
presence of moisture in the atmosphere. Additionally, air is not incompressible. Perhaps more
importantly, the atmosphere is capable of absorbing and emitting electromagnetic radiation, and
radiative heat transfer cannot be neglected.

For these reasons, we think it can be of some interest to move beyond the RB setting, and
consider other forms of convective motion that are closer to the behaviour of the atmosphere.
In this work we have discussed a simple model of radiative–convective dynamics, introduced
by Prandtl in 1925, which we believe can improve our understanding of intense atmospheric
convection. The model is highly idealized, and it should be taken just as a small step from the
basic RB setting towards a closer description of atmospheric phenomena. In this paper, we have
introduced the model and discussed some of the properties of the field of convective plumes that
characterize the dynamics of this system. Future work will have to consider the role of wind
shear, as well as the introduction of an active moisture field.
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