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ABSTRACT

Tropical cyclones pose a significant flood risk to vast land regions in their path because of extreme pre-

cipitation. Thus it is imperative to quantitatively assess this risk. This study compares exceedance frequencies

of tropical cyclone precipitation derived from two independent observational datasets with those estimated

using a tropical cyclone rainfall algorithm applied to large sets of synthetic tropical cyclones. The modeled

rainfall compares reasonably well to observed rainfall across much of the southernUnited States but does less

well in the mid-Atlantic states. Possible causes of this disparity are discussed.

1. Introduction

Tropical cyclones (TCs) contribute approximately 3%

to precipitation in low and midlatitudes. For coastal

areas prone to TCs, this fraction increases to 15%–45%

of all precipitation (Jiang and Zipser 2010). Moreover,

TCs inflict large financial losses, which have been in-

creasing and are likely to continue doing so (Peduzzi

et al. 2012). The increase is linked to economic devel-

opment in coastal areas, rather than climatological fac-

tors, as the nominalized damage of TCs remains without

trend (Weinkle et al. 2018). Precipitation and the re-

sulting freshwater flooding are also one of the leading

causes of fatalities in TCs; indeed, 27% have been at-

tributed to freshwater flooding, whereas wind, including

tornadoes in TCs, was responsible for only 11% of

fatalities (Rappaport 2014).

Precipitation forms in different regions of a TC. The

highest rain rates are found in the eyewall, where the

strongest convection takes place. Outside the eyewall,

precipitation is concentrated into spiral rainbands that

wind outward from the center of the TC. No pre-

cipitation forms in the mostly clear eye, as it is a region

of subsidence (Houze 2014). The heavy precipitation of

TCs is mainly caused by strong updrafts that advect

moisture upward from the boundary layer.

The intensity of precipitation throughout the storm is

linked to the intensity of the secondary circulation,

which is proportional to the intensity of the TC and its

rate of intensification, as the increasing diabatic heating

drives the secondary circulation and thus the updrafts

(Yu et al. 2017). However, at a fixed point under the
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influence of a TC, the storm total precipitation is as

much a function of the duration of the storm as of its

intensity. The larger a TC and the slower its translational

speed are, the larger is the storm total precipitation

(Matyas 2010).

A recent case was Hurricane Harvey, which made

landfall in August 2017 in Texas. Its extreme precipita-

tion of more than 1000mm (Blake and Zelinsky 2018)

made Harvey the wettest TC on record in the United

States (Roth 2018), largely because it stalled over the

Texas’ coastal region for 4 days. Its combined wind, rain,

and storm surge led to direct economic damage currently

estimated at up to U.S. $95 billion (Munich Re 2018).

A more recent example is Hurricane Florence, which

made landfall in North Carolina in September 2018.

With precipitation peaks of more than 700mm, it broke

the records of storm total precipitation of a single storm

in the Carolinas (National Weather Service 2018). The

previously wet summer exacerbated the flood risk, as

the soil was already close to saturation. The resulting

widespread flooding caused U.S. $14 billion in damage

(Faust and Bove 2018).

Risser and Wehner (2017) and van Oldenborgh

et al. (2017) recently analyzed extreme precipitation,

including TCs, in the Gulf of Mexico region. They

estimated the change in return periods of extreme

precipitation events over the last century using rain

gauge, radar, and model data. While their analyses

included approximately 30% extreme precipitation

events that are not associated with TCs, they both

show a clear upward trend in the frequency of extreme

precipitation. They ascribed this trend mainly to an-

thropogenic climate change. This is well in line with

Emanuel (2017), who estimated the trend in model-

simulated return periods of extreme precipitation

events associated with TCs near Houston using the

modeling approach we apply here. In this approach, a

tropical cyclone rainfall algorithm (hereinafter TCR)

is applied to tropical cyclone model output to estimate

the distribution and magnitude of TC rainfall.

The results of applying this modeling approach to

synthetic TC tracks were compared with 60 yr of rain

gauge data along the coast of Texas by Zhu andQuiring

(2013). Lu et al. (2018) applied the TCR toWRFModel

output and compared the resulting rainfall with the

precipitation produced directly by the WRF Model. In

both cases, the TCR performed very well. Here we use

observational records from ;25 yr of radar and ;95 yr

of rain gauge data to evaluate a revised TC pre-

cipitation algorithm applied to large sets of synthetic

TC tracks affecting the United States. By extending the

study of Zhu and Quiring (2013), we aim both to im-

prove the rainfall algorithm and to provide a thorough

analysis of the TCR performance along the entire U.S.

Atlantic coastline.

2. Data

We develop TC precipitation climatologies using

both rain gauge and radar data. Several data sources

were used to accomplish this: radar data from the

NEXRAD radar network (NCEI 2018a), rain gauge

data from an existing TC-precipitation dataset (Zhu

and Quiring 2017, 2013) and historical TC data from

IBTrACS (Knapp et al. 2010) and Colorado State

University (Demuth et al. 2006). We then compare

these climatologies with those derived from the ap-

plication of a revised TCR algorithm to large sets of

synthetic TC tracks.

a. Historical TC (best track) data

We obtain North Atlantic historical TC data from

IBTrACS, a global compilation of TC records (Knapp

et al. 2010). It provides TC positions, wind speed, sea

level pressure and, since 2001, TC size metrics, with

3-hourly resolution. The extended best-track archive

from Colorado State University (Demuth et al. 2006)

additionally contains TC size data from 1988 to 2016 (as

of May 2018) in a 6-hourly resolution. The IBTrACS

record and the extended best-track archive aremerged to

create a new TC track record beginning in the early

twentieth century, including TC size metrics since 1988.

As discussed in section 3a, the radius of outermost closed

isobar (ROCI) is used to determine the TC size. Where

the ROCI was not available, the median of all available

ROCI (;334km) is assumed.

b. NEXRAD radar data

The U.S. radar network covers vast parts of the con-

tinental United States with 159 S-band Doppler radars,

providing a comprehensive resource for precipitation

data (NCEI 2018b). The observational time series for

storms extends back to 1992 (NCEI 2018b) and provide

data at a spatial resolution of initially 18 3 2km on a

polar grid, where the radial resolution improved over

time (Smith et al. 1996; NCEI 2018b).When transforming

the data to a coordinate grid, a uniform resolution of

0.18 3 0.18was chosen. In this step the data are resampled

using a nearest-neighbor technique (NCEI 2019).

The NEXRAD stage III radar data are processed

with a precipitation processing system (Office of the

Federal Coordinator for Meteorological Services and

Supporting Research 2017) that produces precipitation

products from the measured reflectivity values while

applying quality adjustments such as accounting for

ground clutter and beam attenuation. For this analysis,
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the running hourly precipitation accumulations at 37

selected stations were used. The data are archived with

varying temporal resolutions of 4–60min, depending

on the weather situation (Smith et al. 1996). When in-

terpolated, the data provide time-evolving accumu-

lated precipitation over the observed area. Since this

is a running total, the overlap of data also reduces is-

sues stemming from missing single measurements.

The main advantage of radar measurements is their

high resolution in space and time. As TC precipitation

is highly variable in space and time, high resolution is

needed for obtaining accurate estimates of precipitation.

Radarmeasurements themselves contain uncertainties.

Because of the curvature of Earth and the elevation of

the beam, measurements farther away from the radar

are taken at a higher altitude. Inferring precipitation at

the ground from measurements at altitude introduces er-

rors, which aremagnifiedwhen the radar beamextends into

the melting layer, which requires a different precipitation–

reflectivity relationship (Wilson and Brandes 1979). At-

tenuation of radar radiation in heavy precipitation is also

problematic (Curry 2012). Owing to the expansion of the

radar beam, the spatial resolution of the measurements

decreases with increasing distance. To keep these errors

(measuring height, resolution and attenuation) as small as

possible, we limit our analysis to a radius of 100km from

each radar site.

c. Rain gauge data

We use rain gauge measurements from the Daily

Global Historical Climatology Network (GHCN-D) that

have good spatial coverage of daily precipitation data

in the United States. The main sources for GHNC-D in

the United States are the cooperative observer network

(COOP) and the Automated Surface Observing System

(ASOS) network. The COOP rain gauge network is very

extensive, containing 10000 stations operated by volun-

teers in the United States (NCEI 2018b). The records

extend as far back as 1922. TheASOS network consists of

900 automatic land-based observation stations beginning

in 1991 (NCEI 2018b). The HURDAT database, which

provides data in a 6-hourly resolution, was used to de-

termine the TC positions (Landsea and Franklin 2013).

Extreme wind conditions are one of the main error

sources in rain gauge measurements. Strong wind causes

rain drops to fall at an angle, reducing the amount en-

tering the gauges (Sevruk and Nespor 1998). Moreover,

nonautomated gauges can overflow in heavy precipita-

tion events (Crow 2017). In the event of a TC, many rain

gauges experience outages. In this dataset, the low bias

due to high winds is corrected for. The Holland (1980)

parametric wind field model, applied to best-track data,

is used to estimate the wind speed at each rain gauge

4 times per day. The daily average of this is then used in

the following wind correction function:

k5 expf[20:001 ln(I
pd
)]2 [20:0082U

p
ln(I

pd
)]

1 [(0:041U
p
)1 0:01]g, (1)

where k 5 conversion factor, Ipd 5 daily rainfall in-

tensity, and Up 5 wind speed at 10–12m above ground

during precipitation (Sevruk and Hamon 1984). The

correction is applied, regardless of whether a rain gauge

is fitted with a wind shield, because only a minority of

rain gauges have wind shields and no configuration

metadata were available in GHCN-D.

The point measurements from the rain gauges are

gridded using the inverse-distance-weighting method. As

described in Zhu and Quiring (2017), the definition of

neighboring gauges has a large influence on the quality of

the interpolation. Here, all gauges within 80km of each

other are considered neighbors, which yields the lowest

error over the entire measurement period, when com-

pared to satellite data (Zhu and Quiring 2017). For de-

fining TC precipitation, the moving radius boundary

technique (MRBT) is used. In this technique, a certain

limit is defined as the radius of TC precipitation. The

edges of the radii corresponding to the four TC positions

per day are connected to determine the affected area

each day (Zhu and Quiring 2017). For this dataset, the

limit was initially chosen to be 800km, as a generous first

estimate of TC size.

For this study, the rain gauge data are constrained to

a 100-km radius around the available radar stations so

as to better compare with the radar data. The gauge

data provide a substantially longer record of observa-

tions and allow us to make independent estimates of TC

rainfall that can be compared with the radar estimates.

d. Synthetic track model

A large set of synthetic TCs was generated for each

radar site to estimate frequencies of TC precipitation

using the technique of Emanuel et al. (2008) applied

to NCEP–NCAR reanalyses (Kalnay et al. 1996) over

the period 1995–2016. Previous experience with down-

scaling multiple reanalyses datasets shows small differ-

ences in the final results (Emanuel 2017). Broadly, the

technique begins by randomly seeding with weak pro-

tocyclones the large-scale, time-evolving state given by

the reanalysis data. These seed disturbances are as-

sumed to move with the reanalysis, which provided

large-scale flow in which they are embedded, plus a

westward and poleward component owing to planetary

curvature and rotation. Their intensity is calculated us-

ing the Coupled Hurricane Intensity Prediction System

(CHIPS; Emanuel et al. 2004), a simple axisymmetric
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hurricane model coupled to a reduced upper-ocean

model to account for the effects of upper-ocean mix-

ing of cold water to the surface. Applied to the syn-

thetically generated tracks, this model predicts that a

large majority of them dissipate because of unfavorable

environments. Only the ‘‘fittest’’ storms survive; thus the

technique relies on a kind of natural selection. Exten-

sive comparisons to historical events by Emanuel et al.

(2008) and subsequent papers provide confidence that

the statistical properties of the simulated events are in

line with those of historical tropical cyclones.

We created separate sets of 4400 synthetic TCs

(200 per year) passing within 300km of each of the se-

lected points of interest (POIs), corresponding to radar

locations. This selects all TC tracks that are likely to

produce precipitation within 100 km of the POI. The

seeding rate for each event set is calibrated to the ob-

served TC frequency of that set using best-track wind

data. Next, the revised TCR algorithm is used to esti-

mate the rainfall occurring from the synthetic TCs. The

properties of the algorithm are explained in more detail

in the following section. From this modeled TC precip-

itation, the frequencies of rainfall are calculated.

PRECIPITATION ALGORITHM TCR

As Zhu and Quiring (2013) and Lu et al. (2018) de-

scribe, the TCR algorithm uses the net vertical velocity

and the saturation specific humidity to calculate the

vertical vapor flux, and this, multiplied by a precipitation

efficiency, is assumed to equal the precipitation rate.

Although the vertical velocity is a model variable, it is

poorly resolved outside the inner core and is not recor-

ded. Additionally, topographical effects and asymmetric

vertical motion owing to interactions between the TC

and environmental flow and surface friction are not ac-

counted for in the model itself. Instead, we here estimate

the vertical velocity using simple boundary layer physics

and the vorticity equation applied to time-evolving bal-

anced flow, as described in detail by Lu et al. (2018). We

provide a brief summary here.

In the first step, the theoretical radial profile of az-

imuthal wind developed by Emanuel and Rotunno

(2011) is fitted to the maximum wind speed and radius

of maximum winds, and modified by adding a function

of the environmental flow. This is necessary, as CHIPS is

computed in potential radius coordinates, which has

poor resolution outside of the eyewall. Moreover, the

large number of tracks forces one to carefully select the

essential output data of CHIPS. The vertical velocity is

then estimated at any point within the storm’s wind field

by summing five components due respectively to to-

pography, boundary layer convergence, storm vorticity

changes, baroclinic interactions, and radiative cooling.

First, the vertical velocity at the surface is calculated

as the dot product of the boundary layer wind vector

and the slope of the topography, here represented by a

0.258 3 0.258 dataset. Next, the vertical velocity at the

top of the boundary layer is calculated from the surface

vertical velocity together with the convergence of the

Ekman flow in the boundary layer. The time evolution

of the free tropospheric TC vorticity is assumed to

be due mostly to the stretching term in the vorticity

equation, from which the difference between mid-

tropospheric and boundary layer vertical velocity may

be inferred. A baroclinic component is added by con-

sidering the interaction of the TC vortex with envi-

ronmental shear. This is estimated as the dot product of

the gradient wind with the slope of the background

isentrope. As a result, a region of ascent forms down-

shear of the vortex, consistent with observations.

In the entire region of the vortex, a gentle subsidence

that results from radiative cooling is added to the other

four components. This subsidence is here set to a spa-

tially uniform value of 20.005ms21. Once the midtropo-

spheric vertical velocity is calculated, it is multiplied by

the saturation specific humidity of the lower troposphere

and a fixed precipitation efficiency of 0.9 to yield

precipitation. Precipitation is set to zero if this pro-

cedure yields a negative value. The estimated values

of subsidence and precipitation efficiency are based

on Lu et al. (2018).

The largest component is usually the frictionally in-

duced upward motion at the top of the boundary layer.

Here we improve upon earlier work by using drag co-

efficients for a neutrally stratified atmosphere calculated

from a 0.258 3 0.258 surface roughness dataset obtained
from the European Centre for Medium-RangeWeather

Forecasts (ECMWF), rather than using a constant co-

efficient. Not surprisingly, this was found to have sub-

stantial effects on the calculation of boundary layer

convergence away from the coast.

e. Selection of points of interest

We selected radar stations experiencing a reasonably

regular occurrence of TCs (Konrad and Perry 2009).

This includes the coastal areas of the Gulf of Mexico as

well as the Atlantic coastline extending as far north as

New York City, New York. As CHIPS and TCR may

not handle extratropical transition very well (Emanuel

et al. 2004; Lu et al. 2018), we limited the analysis to

areas where TCs usually have not yet transitioned to

extratropical storms. The analyzed stations also extend

several 100km inland, as decaying TCs can still produce

heavy precipitation (Rappaport 2014). We consider

rainfall within a 100-km radius of the POIs. Figure 1

provides an overview of all locations analyzed.
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3. Methods

a. Identifying TC precipitiation in observational data

A common metric of TC size is the radius of the out-

ermost closed isobar. As Matyas (2010) describes, the

ROCI encompasses the area of TC-related rainfall in

90% of all cases. While this means that the area within

the ROCI can exceed the actual area of TC precipita-

tion, rarely any precipitation is unaccounted for. There-

fore, here the ROCI is used as a direct measure to

determine the area of TC-associated rainfall. To avoid

including small, unrelated precipitation events, the

lower limit of a TC precipitation event is defined as

10-mm storm total precipitation. Data associated with

TC rainfall at a certain POI is thus required to be within

100km of a POI, within the ROCI of a TC at a given

time, and to exceed 10mm over the lifetime of the event.

To determine the distance between a TC and a POI at

any given time, the best-track storm center position is

linearly interpolated to the required time of interest.

This is especially relevant for the radar data, as they are

measured in small, varying time intervals. This approach

follows the same principle as the MRBT described in

Zhu and Quiring (2017), with the ROCI as the defined

limit. The MRBT method uses a moving circle around

the TC location to identify affected areas. The radar

data, as well as the rain gauge data, are processed in this

way, so that predominantly TC-associated rain remains.

It is important to note that the rain gauge data have a

daily temporal resolution and thus take into account the

entire area affected by a TC during a day, whereas the

radar data only take into account the area affected by a

TC precisely at the time of the measurement. This dif-

ference may cause the rain gauge data to include non-

TC precipitation. As the rain gauge dataset was initially

limited to 800 km around a TC, in the vast majority of

cases it can be additionally constrained to the ROCI

without loss of data. Only in one case does the ROCI in

the best-track data exceed 800 km, while the TC is in

range of a POI. For radar data, the affected area is an-

alyzed at the time of each measurement, discarding

previously affected areas as soon as they are no longer

within the ROCI. The daily resolution of the rain gauge

data introduces a source of error, as the exact beginning

and end of the TC cannot be taken into account. If an-

other precipitation system is very close to the ROCI of a

TC, it might get classified as TC precipitation. In gen-

eral, this error tends to be small, as convection tends to

be suppressed in the outer regions of TCs because of the

upper-level anticyclone.

b. Spatial character of data

While it is not practical to evaluate radar, rain gauge,

and model data at every grid point available, we still

want to retain some spatial information. For every

storm, the area of most interest and highest immediate

FIG. 1. Selected points of interest.
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impact is the area of largest storm total precipitation.

The runoff from these areas can lead to flooding in other

areas, but this is outside the scope of this study. To re-

duce the effect of areas that were affected by single

convective cells, which are not resolved by the model,

area averages of 0.58 3 0.58 are made around every grid

point of the 0.18 3 0.18 grid. Out of these area averages,

the maximum precipitation is selected, representing that

0.58 3 0.58 area within the observational scope that re-

ceived the most precipitation during a particular event.

We apply this selection, as maximum precipitation can

often be spatially constrained and the average of the

entire area would not represent the impact of the pre-

cipitation satisfactorily. This method is applied to all

three datasets.

c. Statistical methods

Here we describe the methods we use to quantify the

exceedance frequency of rainfall and the associated sam-

pling uncertainty associated with the two observational

datasets.

1) EXCEEDANCE FREQUENCY

The exceedance frequency describes the annual

frequency at which an event larger than a certain

magnitude occurs. It can be obtained by estimating

an empirical cumulative distribution function (CDF).

To obtain the CDF, we calculate the exceedance fre-

quency f of each event x at a POI. This yields the

empirical CDF:

f (x)5 n
exc

(x)/T , (2)

where f 5 exceedance frequency, x 5 storm total pre-

cipitation of event, nexc 5 number of exceedances and

T 5 total length of observation period

2) ERROR CALCULATION

The relative root-mean-square error (rRMSE) and

relative mean absolute error (rMAE) are statistical

methods of quantifying the difference between two

datasets. The relative error is defined as the relative

residual between the actual data D and the predicted

values D0:

rRMSE5

�
D2D0

D

�2
" #1/2

and (3)

rMAE5

����D2D0

D

���� . (4)

We later use the rRMSE and rMAE to quantify the dif-

ference in event frequency f between both observational

datasets [section 4a(1)]. The rRMSE is sensitive to out-

liers and will favor predictions that avoid large deviations

from the actual values.

3) MODEL SAMPLING UNCERTAINTY

The synthetic track data constitute a much larger

sample than the observational data, which, owing their

paucity, suffer from substantial sampling uncertainty.

To quantify this uncertainty, the 90% confidence inter-

val around the model frequencies is determined, using

the inverse CDF of a Poisson distribution based on the

expected number of observations, given the synthetic

track rate and the number of years in the observational

datasets.

4) MEASUREMENT GAPS

As both radar and rain gauges can suffer extreme

conditions during a TC, they are prone to outages.

Since the radar data have relatively high time resolution,

even short measurement gaps of less than a day can be

identified. If the gaps in the radar data are less than 2h,

they are interpolated from the adjoining measurements.

As the radar measurements in the 1990s are in hourly

intervals, the choice of 2 h is a compromise between

making use of as much data as possible and accounting

for the temporal variability of precipitation. Since the

temporal variability of rainfall is very high, longer

stretches of time cannot be interpolated without missing

potential heavy rainfall. If the gap exceeds this length,

this time span will be defined as missing. By sub-

tracting the missing minutes from the length of the

event (Dtevents), the cumulative length of viable mea-

surements is defined (Dtmeasurements). The temporal

fraction of viable measurements (correction factor C)

can then be used to readjust the frequency of events

when calculating the frequencies:

C5Dt
events

/Dt
measurements

and (5)

f
adjusted

5 f
observed

C . (6)

This approach assumes that the missing measure-

ments are similar to all obtained measurements. This

implies the additional assumption that measurements

outages occur randomly during an event. Using this

method, the missing time spans are compensated for

from all viable measurements over all events. Since

the rain gauge data are only recorded daily and have

already been interpolated across measurement gaps,

no compensation of this kind is required. However,

storms that are missing completely, according to the

best-track record, are identified, and the frequency is

upscaled accordingly.
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4. Results

a. Comparison of observational datasets

Since the rain gauge data have previously been com-

pared with satellite and modeled data (Zhu and Quiring

2017), their caveats very well known. Even though they

are corrected for wind speed effects, they still tend to

miss the peak precipitation of events because of their

point-measurement nature (Zhu andQuiring 2017). The

radar data, on the other hand, have their own caveats, as

described in section 2b. This dataset is available from

Feldmann (2019). In the following both datasets are

compared with each other.

1) COMPARISON OF IDENTICAL OBSERVATION

PERIODS

Figure 2 shows a comparison of exceedance frequency

curves calculated from the rain gauge and radar data-

sets, for six POIs, selected to represent the geographi-

cal distribution of all POIs: Lake Charles, Louisiana,

represents the northwestern Gulf Coast; Fort Rucker,

Alabama, represents the inland region of the northeastern

Gulf Coast; Miami, Florida, represents the southern

Gulf Coast; Charleston and Greer, South Carolina,

represent the coast and inland regions of the Carolinas;

and Norfolk–Richmond, Virginia, represents the mid-

Atlantic coastal area. The results at other POIs are

shown in the online supplementary material. The shad-

ing represents the percentage of missing radar or rain

gauge data at each POI. Here, the rain gauge dataset has

been restricted to the observation period of the radar

data to yield copacetic comparisons.

In most cases, the radar and rain gauge data line up

very well. While rain gauge data often show higher

precipitation at higher frequencies (Fort Rucker,

Miami, and Charleston), the radar data tend to show

somewhat higher precipitation at lower frequencies

(Lake Charles, Fort Rucker, and Miami). Because the

rain gauge data have only daily resolution, in contrast to

the much finer resolution of the radar data, they might

include non-TC precipitation that occurred within the

same day as a TC event. The higher values of extreme

precipitation estimated by radar are likely due to their

better area coverage and better functionality in high

FIG. 2. Comparison of radar- and rain gauge–derived frequencies within the same observation period (;25 yr; for the exact range see

Table 1 under years of radar data). The uncertainty resulting from missing data is shown by shading. Note that the axes are different for

different POIs.
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winds. As the precipitation extremes are mostly from

intense storms, the rain gauge data are likely to be more

uncertain for such events.

In Greer, the radar data substantially underesti-

mate the gauge-measured precipitation over the whole

range of frequencies. However, Greer is missing 38.2%

of TC radar precipitation measurements. When too

many relevant data are missing, rescaling the fre-

quency may not accurately account for the lack of

data. In this case, the use of the radar data is not

recommended.

To summarize the quality of the datasets, Table 1

shows the completeness of both radar and rain gauge

data, as well as their rMAE and rRMSE of frequency.

POIs in italics have a difference in frequency that is

greater than 0.5 yr21. Because the difference is consid-

erable, the data need to be used with caution. POIs that

are not recommended for this analysis are indicated in

italics and with an asterisk, because they show large

differences in frequency (.0.9 yr21) during the same

observational period.

Key West, Florida, and Greer, as mentioned above,

have serious deficiencies in either radar or rain gauge

data coverage. At this level, the frequency rescaling

method is insufficient to properly account for the miss-

ing data. Discrepancies also result from the inherent

differences between the measurement methods. For

example, the rain gauges are still point-based in nature;

TABLE 1. Quality of observational data: fraction of available measurements for radar and rain gauge data, and relative differences in

frequencies between radar and rain gauge data. Italics indicate problem data: an rMAE. 0.5 yr21indicates that caution is advised, and an

rMAE . 0.9 yr21 indicates that the data are not recommended for use (locations marked with an asterisk).

Data availability

Rain gauge Radar Frequency error

Point of interest Percent Yrs Percent Years rMAE rRMSE

Atlanta (GA) 94.9 1922–2017 72.5 1995–2017 0.878 1.061

Austin/San Antonio (TX) 97.1 1922–2017 72.1 1995–2017 0.400 0.434

Birmingham (AL) 96.4 1922–2017 72.5 1995–2017 0.898 1.617

Brownsville (TX) 81.6 1922–2017 82.6 1995–2017 0.772 0.824

Charleston (SC) 93.8 1922–2017 91.0 1996–2017 0.369 0.431

Columbia (SC) 94.0 1922–2017 77.7 1995–2017 0.718 0.862

Columbus Air Force Base (MS) 95.8 1922–2017 63.4 2001–17 0.193 0.241

Corpus Christi (TX) 89.0 1922–2017 77.0 1998–2017 0.415 0.532

Dover Air Force Base (DE) 81.6 1922–2017 64.2 2001–17 0.446 0.588

Eglin Air Force Base (FL) 94.5 1922–2017 74.2 2001–17 0.379 0.485

Fort Polk (LA) 92.5 1922–2017 59.0 2001–17 0.554 0.642

Fort Rucker (AL) 93.1 1922–2017 67.6 2001–17 0.581 0.672

*Greer (SC) 96.2 1922–2017 61.8 1995–2017 2.662 3.782

Houston (TX) 89.6 1922–2017 74.3 1995–2017 0.303 0.351

Jackson/Brandon (MS) 95.6 1922–2017 71.2 2003–17 0.398 0.476

Jacksonville (FL) 88.6 1922–2017 79.5 1995–2017 0.374 0.510

*Key West (FL) 61.3 1922–2017 80.1 1996–2017 0.965 0.966

Lake Charles (LA) 92.8 1922–2017 70.2 1995–2017 0.619 0.708

Laughlin Air Force Base (TX) 94.3 1922–2017 71.3 2002–17 0.341 0.432

Maxwell Air Force Base (AL) 96.7 1922–2017 66.2 2001–17 0.521 0.662

Melbourne (FL) 85.2 1922–2017 84.9 1995–2017 0.445 0.550

Miami (FL) 85.4 1922–2017 81.2 1995–2017 0.226 0.279

Mobile (AL) 92.9 1922–2017 70.8 1995–2017 0.396 0.531

Morehead City (NC) 91.1 1922–2017 78.8 1995–2017 0.233 0.284

New Orleans (LA) 89.9 1922–2017 70.6 1995–2017 0.226 0.313

New York (NY) 75.5 1922–2017 58.0 1995–2017 0.306 0.357

Norfolk/Richmond (VA) 85.9 1922–2017 80.1 1995–2017 0.491 0.640

Philadelphia (PA) 78.6 1922–2017 71.2 1995–2017 0.825 1.120

Raleigh/Durham (NC) 94.1 1922–2017 83.0 1995–2017 0.270 0.339

Roanoke (VA) 93.6 1922–2017 80.1 1995–2017 0.542 0.627

Robins Air Force Base (GA) 94.5 1922–2017 67.4 2001–17 0.374 0.580

San Juan (PR) 84.1 2001–17

Shreveport (LA) 96.5 1922–2017 66.5 1998–2017 0.449 0.584

State College (PA) 86.7 1922–2017 68.6 1995–2017 0.771 0.975

Tallahassee (FL) 91.4 1922–2017 67.7 1995–2017 0.520 0.646

Tampa (FL) 83.9 1922–2017 79.1 1995–2017 0.438 0.709

Wilmington (NC) 88.4 1922–2017 86.2 1995–2017 0.621 0.717
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therefore, they can miss the precipitation peak of an

event if it passes in between them.

2) COMPARISON OF COMPLETE RECORDS

Since the rain gauge data extend much further back

in time, they present an opportunity to examine event

frequencies on different time scales. Figure 3 shows that

while many POIs still line up very well, the length of the

record is of great importance. If the largest events have

occurred during the radar observation period, they show

up with a considerably higher frequency than in the

rain gauge dataset (e.g., Lake Charles and Norfolk–

Richmond). This illustrates that estimating the fre-

quency of events that only occur sporadically during the

respective observation periods of each dataset is chal-

lenging. For example, an event like Hurricane Harvey

(.500-mm storm total precipitation), which affected the

Lake Charles area (Fig. 3, top right), is a $25-yr event

($0.041 yr21) in the radar data, but a $100-yr event

($0.010 yr21) in the rain gauge data. Model analyses

suggest that it likely is an ;325-yr event (0.003 yr21)

(Emanuel 2017). This also poses a problem when

comparing radar- and gauge-based frequencies with

those based on the TCR-model-based estimates, which

are based on far more data.

Another noticeable feature is the difference in maxi-

mum frequency at some stations (e.g., Lake Charle,

Fort Rucker, Norfolk–Richmond, Greer). The maxi-

mum frequency shows the overall event frequency of

any TC precipitation occurring. The difference between

the datasets may in part reflect the nonstationarity of TC

frequency. Especially when comparing estimates based

on a long record to those based on a shorter one, chances

are that the shorter period happened to fall in a period of

higher or lower activity than on average.

b. Model performance

When comparing TCR-based frequencies with those

deduced from observations, several deficiencies become

evident. For one, almost all stations show a strong offset

in high-frequency, low-rainfall events (e.g., Fig. 5, de-

scribed inmore detail below), while there is a better fit in

the midrange of frequencies. Some stations also show

vastly different slopes in observational and modeled

FIG. 3. As in Fig. 2, but during the complete observation period (;25 yr for radar data, and;95 yr for rain gauge data; for the exact range

see Table 1).
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frequencies (e.g., Fig. 4). Very few show a consistent

offset over the entire range. Since the two observation-

based frequency curves agree quite well at most stations,

these differences are likely deficiencies of themodel and

not of the observational data. In the following, we sug-

gest and evaluate possible sources of model error.

1) IMPROVING THE DRAG COEFFICIENT

The TCR algorithm is highly sensitive to the choice

of the surface roughness coefficient as it directly influ-

ences the magnitude of the frictionally induced inflow

(Lu et al. 2018). We previously assumed that the varia-

tions in the drag coefficient, CD, are a linear function of

topographic height. The linear estimate implemented in

the model works well for many stations, but shows large

deficiencies in inland areas with high elevation and flat

terrain and also in other areas with variations in surface

roughness unrelated to topography, but rather surface

properties. To improve the performance, we here used

surface roughness values at a resolution of 0.258 3 0.258,
provided by ECMWF. The neutral drag coefficient that

we apply to the gradient wind is then estimated, loosely

following Esau (2004), as

C
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11 50C
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D

, (8)

where k is von Kármán’s constant, here taken to be

0.35.

This formulation of the drag coefficient directly af-

fects the slope of themodel-derived frequency curves, as

it proportionally affects the precipitation rate. We apply

the drag coefficient [Eq. (8)] not only in the TCR algo-

rithm but also to the CHIPSmodel simulations, in which

it affects the rate of decay of TCs and thus also their

overall frequency at inland locations. An example of

the improvement in model performance can be seen in

Fig. 4. Miami, a flat coastal area, was previously assigned

too large a drag coefficient, creating a frequency distri-

bution much steeper than observed. The use of surface

roughness greatly improves the model performance and

observed events now lie within the 90% confidence in-

terval of the sampling uncertainty. Similar behavior

can be seen for Key West; Tallahassee, Florida; and

Houston, Corpus Christi, and Brownsville, Texas. These

are also flat coastal areas with low surface roughness.

Hereinafter, all figures are based on TCR calculations

with the improved drag coefficient.

2) BACKGROUND PROBABILITY OF

PRECIPITATION

The ROCI, while it is one of the few readily available

size metrics, has shortcomings, as described by Knaff

et al. (2014). There is no consistent method to determine

it, and most methods include subjective choices that are

not always well documented. Moreover, the ROCI is

influenced by the ambient pressure field and can be

enlarged or diminished by several means. As Matyas

(2010) states, in 90% of cases the ROCI includes or

exceeds the area of TC-related precipitation. This leads

to additional non-TC-related areas that are included

FIG. 4. Comparison of radar- and rain gauge–derived frequencies with those derived from the

TCR algorithm applied to 4400 events affecting Miami. The model-derived estimate based on

the earlier version of TCR with topographically determined drag coefficients is shown by the

dashed gray line. Estimates of the sampling uncertainty of the TCR data with respect to the

radar and rain gauge data are shown by blue and pink shading, respectively.

1862 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 58



within the ROCI in the majority of observed cases. The

precipitation within this nonrelated area should cor-

respond to the general probability of precipitation

(e.g., in the form of summer thunderstorms) occurring

on a normal day. Such background precipitation is not

accounted for by the TCR algorithm. To determine

whether this is an important factor in the discrepancies,

the background frequency of precipitation is added to

the TC precipitation frequency produced by the model.

To obtain the background probability of precipitation,

we use the daily precipitation records for the summer

months of 15 years (2000–14) (NCEI 2018b). We elim-

inate days associated with TCs from the dataset. After

calculating the exceedance frequency, we rescale it to

the number of TC days. This yields the background

probability of precipitation and is added to the fre-

quency obtained by the TCR algorithm. As shown in

the case of Jacksonville, Florida (Fig. 5), this effectively

narrows the gap between observed and modeled fre-

quency in the low-frequency range. However, the TCR

algorithm still underestimates the observed frequency.

This assumption has also been tested for Lake Charles,

Charleston, Norfolk–Richmond; Laughlin and San

Antonio, Texas; and Atlanta, Georgia (not shown).

They all show qualitatively the same improved TCR ex-

ceedance frequencies after addition of the background

probability of precipitation, but still underestimate the

observation-derived exceedance frequencies.

3) WIND FIELD MODEL

We use the theoretical wind field profile developed by

Emanuel and Rotunno (2011), which is also used in Zhu

and Quiring (2013). This profile should only be valid in

the inner core, but we here use it everywhere. As de-

scribed in Emanuel andRotunno (2011) and Chavas and

Lin (2016), this wind profile tails off too sharply in the

outer region, where it should be matched to an outer

wind profile. This would produce more rain in the outer

regions and may also help to explain the discrepancies

betweenmodel predictions and observations in the high-

frequency, low-intensity regime. Currently, outer wind

profiles are not analytically solvable and thus incur a

computational expense, when applied to large track sets.

Since it is more essential to represent the core for the

high-impact events, the accuracy of the outer region is

sacrificed in favor of keeping computational resources

to a minimum.

4) MODEL PERFORMANCE IN DIFFERENT REGIONS

We applied our modeling approach to all POIs, cov-

ering theU.S. coastline fromTexas toNewYork City, as

well as several inland locations. We emphasize the com-

parison with the rain gauge-derived estimates in the fre-

quency range from 0.03 to 0.3yr21 to avoid both the very

large observational sampling uncertainty at the low-

frequency end of the spectrum and the aforementioned

issues with the TCR approach at the high-frequency end

of the spectrum. Figure 6 provides an overview of TCR’s

performance in different regions. The radar and rain

gauge data are used from their respective complete ob-

servational periods, resulting in available data for ;25

and;95yr. The results at other POIs are presented in the

online supplementary material.

Lake Charles, which is relatively far west, shows good

agreement throughout the entire range of rain gauge data.

The radar data lie near or just above the 90% confidence

FIG. 5. Comparison of radar- and rain gauge–derived frequencies with those derived from the

TCR algorithm applied to 4400 synthetic tracks affecting Jacksonville. The gray dashed line

shows the model-derived frequencies modified to include the background probability of pre-

cipitation in summer months. Estimates of the sampling uncertainty of the TCR data with

respect to the radar and rain gauge data are shown by blue and red shading, respectively.
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bound of the TCR sampling uncertainty, except for the

largest event, which was the storm total precipitation of

Hurricane Harvey. Because of the relatively short time

span of radarmeasurements, and perhaps an upward trend

in TC rainfall, Hurricane Harvey shows up as a more fre-

quent event than indicated by the longer-term gauge data.

Fort Rucker, farther inland along the eastern part of

theGulf Coast, shows very good agreement for both rain

gauge and radar data. Both observational datasets lie

within the 90% confidence interval of the TCR data.

Miami’s annual exceedance frequencies also show good

agreement between the TCR algorithm and the obser-

vations. The improvement of the drag coefficient alle-

viated the previously observed strong difference in the

slope of the model-derived frequencies. Similar results

are found for the rest of coastal Florida and coastal

Texas. Charleston, on the coast of SouthCarolina, shows

good model performance. Both the radar and the rain

gauge data lie almost exclusively inside their sampling

confidence intervals.

Farther north, modeled frequencies show less agree-

ment with the radar data; however, the agreement with

the rain gauge data remains good. At Norfolk, almost all

radar data lie outside the sampling error bounds, whereas

all rain gauge data lies within the error bounds. This

suggests that this region may have experienced a short-

term (20yr) trendwith an elevated TC rainfall frequency.

As Fig. 2 shows, rain gauge and radar data otherwise

agree very well within the same observation period.

In general, the size of a TC is increasingly difficult to

define at higher latitudes, since baroclinicity causes

asymmetries in the shape that are not accounted for in

the MRBT method. Nonetheless, modeled and ob-

served results agree quite well in this region.

Greer, lying farther inland in South Carolina, also

shows strong disagreement, but in this case there are

strong gradients in surface roughness. Since the model

data are evaluated in a similar way as the observation

data and the maximum storm total precipitation is

selected, the high surface roughness values may have a

disproportionally large impact. A possible solution

could be to use a smoothed surface roughness grid.

In general, the TCR reacts very sensitively to changes

in surface roughness. The effects of larger surface

FIG. 6. Comparison of radar- and rain gauge–derived frequencies data with those derived from the TCR- algorithm applied to 4400

synthetic tracks affecting six radar sites. Estimates of the sampling uncertainty of the TCR data with respect to the radar and rain gauge

data are shown by blue and red shading, respectively. Note that the axes are different for different POIs.
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roughness are also not advected with the wind field, but

only affect the rain rate directly above, which leads

to very abrupt changes in precipitation intensity. This

effect was also described in Lu et al. (2018).

5. Conclusions

We analyzed and compared three methods of esti-

mating frequencies of TC rainfall. Rainfall frequencies

sourced from rain gauge and radar data largely support

each other andwork best for high event frequencies with

low intensities. Even though they both present sub-

stantial measurement uncertainties under TC conditions

and have strongly differing properties, the frequency

estimates generally agree quite well. The inherent un-

certainty of estimating the frequency of an event that

occurs only very few times during the observation period

is the main limitation of the radar data and, to some

extent, the rain gauge data. While the ;90 yr of gauge

records substantially exceed the;20 yr of radar records,

the truly extreme events with the highest impacts tend to

occur less frequently than every 90 yr. Being able to

correctly estimate lower exceedance frequencies is one

of the advantages of estimating rainfall frequencies us-

ing the TCR algorithm applied to large sets of synthetic

TCs: By this means, one can generate enough events to

calculate the tail of the frequency distribution to a range

of frequencies around 1024 yr21, which relies on physi-

cal principles rather than statistics. When we evaluate

model results in the middle range of the distributions

(frequencies of 0.3–0.03 yr21), we see that most coastal

locations perform very well, especially along the Gulf

Coast and the southern part of the Atlantic Coast. Far-

ther inland, the TCR algorithm seems to experience

difficulties in representing areas with large gradients in

surface roughness. Moreover, locations with very few

recorded events have large sampling uncertainty, and

thus, not surprisingly, show less agreement between

TCR data and observational data. However, inland lo-

cations not affected by sparse events or large gradients

in surface roughness also perform very well. The POIs in

higher latitudes need to be considered carefully, since

the ROCI as the definition of the area affected by

TC precipitation is more problematic, as TCs become

more asymmetric. Nevertheless, this region shows good

agreement between the rain gauge data and themodeled

data, suggesting a good representation of the long-term

conditions. Discrepancies between the long-term rain

gauge data and short-term radar data indicate that this

region has had a higher overall occurrence frequency of

TCs within the last 20 yr.

Given these caveats, the TCR algorithm applied to

synthetic TC tracks achieves good agreement with

observational records at the majority of analyzed loca-

tions. It provides a powerful tool to estimate the tail of

the event frequency distribution for the high-impact

events that cause the most damage. Essential to its

functionality are good estimates of the drag coefficient

and reasonably accurate renditions of the wind profile.
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