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ABSTRACT

Interest in hurricane risk usually focuses on landfalling events of the highest intensity, which cause a dis-

proportionate amount of hurricane-related damage. Yet assessing the long-term risk of the most intense

landfalling events is problematic because there are comparatively few of them in the historical record. For this

reason, return periods of the most intense storms are usually estimated by first fitting standard probability

distribution functions to records of lower-intensity events and then using such fits to estimate the high-

intensity tails of the distributions. Here the authors attempt a modest improvement over this technique by

making use of the much larger set of open-ocean hurricane records and postulating that hurricanes make

landfall during a random stage of their open-ocean lifetime. After testing the validity of this assumption, an

expression is derived for the probability density of maximum winds. The probability functions so derived are

then used to estimate hurricane return periods for several highly populated regions, and these are compared

with return periods calculated both from historical data and from a set of synthetic storms generated using

a recently published downscaling technique. The resulting return-period distributions compare well to those

estimated from extreme-value theory with parameter fitting using a peaks-over-threshold model, but they are

valid over the whole range of hurricane wind speeds.

1. Introduction

Estimation of the return periods of hurricane winds is

an important component of hurricane risk assessment.

For many applications, it is important to quantify the

return periods of the most extreme winds, which return

periods may be comparable to or longer than the histor-

ical record at the site in question, making direct inference

from historical storms problematic. Early risk assess-

ments (e.g., Georgiou et al. 1983; Neumann 1987; Jagger

et al. 2001) fitted standard distribution functions, such as

lognormal or Weibull distributions, to the distribution

of maximum intensities of all historical storms coming

within a specified radius of the point of interest, and then,

drawing randomly from such distributions, used standard

models of the radial structure of storms, together with

translation speed and landfall information, to estimate the

maximum wind achieved at the point of interest. A clear

drawback of this approach is that estimates of the fre-

quency of high-intensity events are sensitive to the shape

of the tail of the assumed distribution, for which there

are very little supporting data. This limitation was, to

some extent, circumvented in the work of Darling (1991)

and Chu and Wang (1998), who used empirical global

distributions of relative intensity (the ratio of actual to

potential intensity) together with climatological values

of potential intensity to infer local intensity distribu-

tions. A similar approach was taken by Murnane et al.

(2000), who used global estimates of hurricane actual

(rather than relative) wind intensity cumulative proba-

bility distributions.

Another approach to the difficulty of defining the tails

of the intensity distributions is to fit the shorter, histor-

ically inferred return periods to a limited set of func-

tions that conform to expectations based on generalized

extreme-value (GEV) theory (Jagger and Elsner 2006).

This fit provides an extrapolation to very long return

periods. A third approach is to generate large sets of

synthetic events and use those to infer return periods
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(Vickery et al. 2000; Emanuel et al. 2006). Although this

second approach can be used directly to infer arbitrarily

long return periods, the computational requirement in-

creases with the desired return period. Here, too, one

could fit GEV functions to the calculated return periods

and use those functions to extrapolate to higher return

periods. One limitation of this approach is that the GEV

functions will not be generally valid over the whole range

of return periods, since they are designed to describe the

extreme tails of distributions, and so it is not always clear

whether the data being fitted lie far enough toward the

distribution tail to be in a region for which the GEVs are

valid. For this reason, it is desirable to derive functional

forms of return periods that are valid over the whole

range of hurricane wind speeds. An effort to do so is

described here.

2. Empirical probability density functions for
normalized hurricane wind speeds

Using best-track data, Emanuel (2000) calculated cu-

mulative distributions of storm lifetime maximum wind

speed, normalized by the potential intensity at the place

and time each storm achieved its peak intensity. This was

done for storms whose peak intensity was not limited by

landfall or passage over cold water. These distributions

were shown to be bilinear, with one slope for tropical

cyclones of subhurricane intensity and another slope

for hurricanes. These correspond to constant probability

densities, one for hurricanes and a second, higher den-

sity for subhurricane-strength tropical cyclones. It was

also shown that the probability that the (normalized)

wind speed is any given fraction of the storm lifetime

maximum (normalized) wind speed is a constant. These

two empirical findings, taken together, were shown to

imply that the probability density f of encountering a

normalized hurricane wind speed x at any given point in

a storm’s lifetime is given by

f (x) 5�c ln(x), (1)

where x [ y/yp, with y being the maximum circular com-

ponent of the wind and yp being the potential maximum

wind speed. This was shown to be valid over xt # x # 1,

where xt is a threshold loosely corresponding to the

(dimensional) hurricane threshold wind speed of 64 kt

(1 kt ’ 0.5 m s21). The quantity c is defined as

c [
1

1� x
t
1 x

t
lnx

t

. (2)

This ensures that the integral of the probability density

over x in the interval xt # x # 1 is unity.

The complementary cumulative probability distribu-

tion derived from (1), for normalized circular winds X in

excess of normalized wind speed x, is just the integral of

(1) over x:

P(X . x) 5

ð1

x

f (x) dx 5 c[1� x 1 x ln(x)], (3)

where it is understood that xt # x # 1. This should be

interpreted as the probability, given that an event exists,

that its normalized wind speed X exceeds x.

Now suppose that individual events are independent

of each other, and occur at an annual rate r. Then the

annual rate of encountering normalized circular winds in

excess of X is rP(X . x) and the annual probability of

encountering normalized circular winds in excess of X is

P
year

(X . x) 5 1� exp[�rP(X . x)]

5 1� exp �rc[1� x 1 x ln(x)]f g. (4)

The return period is, by definition, just the inverse of the

probability given by (4).

To test the new assumption we are making here, that

landfall occurs during a random phase of a storm’s life

cycle, we compare the predictions of (4) with deductions

from best-track data and from large sets of hurricane

events synthesized using the method of Emanuel et al.

(2006). This method begins by drawing randomly from

a space–time probability distribution of genesis events

deduced from best-track data (Jarvinen et al. 1984) and

then carries the track forward using either a Markov

chain based on the best-track data or on a beta-and-

advection model (Marks 1992) driven by reanalysis winds

(we use the second approach here). Storm intensity is cal-

culated using a deterministic coupled ocean–atmosphere

model (Emanuel 1995).

In normalizing the maximum circular wind compo-

nent of a landfalling storm, it is not always clear what

value of potential intensity to use, since it varies along

the storm track. This is particularly problematic in the

case of storms passing over cold water before making

landfall, as in the case of New England hurricanes; here

the potential intensity can be small or even zero in the

hours before landfall. Thus, here we treat the normal-

izing potential intensity as an empirical parameter for

each location at which hurricane risk is assessed. First we

estimate the probability density f(y) of the dimensional

maximum circular wind component of historical or syn-

thetic storms. From (1) and the definition of x, we have

f (y) 5�c ln(y) 1 c ln(y
p
). (5)

Linear regression on observed distributions of f can then

be used to determine the optimal value of yp as well as
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the constant c, which, through (2), also yields an optimal

value of xt. We conduct this regression over synthetic

events whose circular wind speeds exceed 100 kt to max-

imize the fit near the important high-intensity end of the

distribution, but we limit the upper end of the regres-

sion to circular wind speeds for which there are at least

10 events in the synthetic set. We note that fitting to the

distribution of storms whose circular wind speeds ex-

ceed 100 kt also avoids the problem that the character of

the distribution changes for wind speeds below nominal

hurricane strength, as mentioned previously.

Figure 1 compares return periods of circular wind com-

ponent calculated from the inverse of (4) (red curve) with

those from sets of synthetic tracks passing within 100 km

of New Orleans, Louisiana, and Miami, Florida, and also

with tracks passing over the coast of New England, from

New York City, New York, to Eastport, Maine (blue

dots). The circular wind component is directly calcu-

lated in the synthetic track technique. In each case, the

regression to find the optimal potential intensity yielded

r2 (correlation coefficient squared) values in excess of 0.9

and significant at the 1% level. Return periods from the

synthetic tracks line up reasonably well with the formula

given by the inverse of (4). We also show in Fig. 1 return

periods estimated from historical hurricane data avail-

able from the National Oceanic and Atmospheric Ad-

ministration National Hurricane Center (Jarvinen et al.

1984). For these historical tracks, we subtract 60% of the

translation speed to estimate the circular wind compo-

nent (Emanuel et al. 2006). To quantify the degree of

agreement between return periods derived from the best-

track and synthetic event sets, we first estimate the total

number of events expected over the period of time that

the best tracks are drawn from, assuming that the annual

frequency indicated by the synthetic method is correct.

We then assume that the actual number of events over

that time interval is a random draw from a Poisson dis-

tribution with the aforementioned mean. We then derive

from the Poisson distribution the integer number of events

corresponding to the 5% and 95% quantiles of the distri-

bution. Thus, if the best tracks are indeed drawn from

the same distribution as the synthetic tracks, then 90%

FIG. 1. Return periods of maximum circular wind component

within 100 km of (a) New Orleans, (b) Miami, and (c) intercepting

the New England coast. Blue dots show return periods deduced

from 3000 synthetic events near New Orleans and Miami, and over

17 000 New England events. The green dots show return periods

based on best-track data, and the blue crosses to the right and left

denote return periods within which 90% of the best-track return

periods are expected to fall if the mean rate given by the synthetic

tracks is correct. (The absence of crosses to the right where they

exist on the left denotes an infinite return period, or zero count.)

The red curve shows return periods based on (4) with a constant,

empirically determined potential intensity yp, the values of which

are 149 kt for New Orleans, 161 kt for Miami, and 111 kt for New

England.
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of them would fall between these limits, which are in-

dicated by crosses in Fig. 1.

Return periods from the synthetic tracks do line up

reasonably well with the formula given by the inverse of

(4) using the empirically chosen constant potential in-

tensity, and the historical events are mostly contained

within the 90% confidence interval. At the high-intensity,

long–return period end of the distribution, however, there

are so few historical events that they often lie at or near

the limits of the 90% confidence range.

The good agreement between the shape given by (4)

and the shape of the synthetic-track return periods sug-

gests that, at least for these events, using a constant

empirical potential intensity for each landfall location

and assuming that landfall occurs during a random phase

of the storm’s lifetime works well, even for the New

England storms. Although the resulting probability dis-

tributions are to some extent empirical, they retain the

important property that the maximum circular wind com-

ponent is bounded by a peak potential intensity.

To predict the true maximum wind speed experienced

at a point of interest, it is necessary to account for the

contribution of the translation velocity to the total storm

wind. Here, following Emanuel et al. (2006), we add 60%

of the translation velocity to the circular wind compo-

nent. The probability of experiencing a net wind yn will be

the convolution of the probability of experiencing a cir-

cular wind component y with the probability that 60% of

the storm’s translation velocity is u:

P(y
n
) 5 P(y 1 u) 5

ð‘

0

P
y
(y

n
� u)P

u
(u) du, (6)

where Py is the probability density for circular wind

component y and Pu is the probability density for 60% of

the translation speed, and we have assumed that the

translation velocity is independent of the circular wind

speed y.1 The probability density function Pu(u) for 60%

of the translation speed is calculated directly from the

synthetic tracks, discretized to intervals of 2 kt; follow-

ing the preceding development, the probability density

Py(xe) of the modified normalized circular wind com-

ponent is given by

P
y
(x

e
) 5�c ln(x

e
), (7)

where xe [ y/yp, with yp being the empirically deter-

mined constant potential intensity and c being given

by (2). As before, the cumulative probability is given by

integrating (6) over all values of yn exceeding a thresh-

old. Figure 2 compares these return periods (the inverse

of the cumulative probabilities) with those calculated

directly from the synthetic event sets and from historical

data, with the confidence interval calculated as with the

circular wind component. The agreement between the

return periods estimated from the synthetic event set

and those calculated from the cumulative distribution

based on (7) is very good, and thus the quasi-empirically

derived probability functions serve as reasonable con-

tinuations of the event data to very long return periods.

Agreement with return periods based on historical best-

track data is also reasonably good.

3. Comparison with GEV approximations

Generalized extreme-value theory builds on the central

limit theorem to derive functional forms for probability

distributions near the extreme tails of the distributions. A

comprehensive review of the application of GEV theory

to the estimation of hurricane return periods using his-

torical hurricane data is provided by Jagger and Elsner

(2006), who show that reasonable fits to historical data are

provided by the GEV probability distribution. This dis-

tribution, given by (8), is the probability of having at least

one event in any given year whose wind speed Wn ex-

ceeds yn. In other words, the probability that the max-

imum wind speed during any given year exceeds yn is

given by

P(W
n

. y
n
) 5 1� exp �r 1 1 j

y
n
� m

s
u

� �� ��(1/j)
( )

, (8)

where r is the annual rate of all events, m is a threshold

wind speed, and sm and j are the scale and shape pa-

rameters. (A separate functional form is obtained for

the case j 5 0.) Jagger and Elsner (2006) show that the

threshold velocity m may be estimated from the data

using mean residual life plots. We fit the rate, scale, and

shape parameters using a peaks-over-threshold model.

In this model formulation, we estimate the parameters

using the subset of data whose winds exceed m. Figure 3

shows the results of such an exercise, in which the pa-

rameters in (8) have been chosen to optimize agreement

with the synthetic track data; the best-fit values of these

parameters are listed in Table 1.2 In all cases, the fit is

1 This may not always be justified; for example, high translation

speeds may be correlated with strong wind shear, which would in

turn usually be associated with smaller circular wind speeds.

2 Bear in mind that the frequency given for New England rep-

resents the entire coastline, whereas the frequencies for Miami and

Boston represent storms passing within 100 km of those points.
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FIG. 2. As in Fig. 1, but for maximum total wind component and the

red curve now shows return periods based on (4) and (6).

FIG. 3. As in Fig. 2, but omitting the best-track data and showing

instead, in green, the best fit to the synthetic storm return periods

of the extreme value function (8), with parameter values given in

Table 1.
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very good and also very close to the probability functions

derived here. The rationale for this exercise is to show

that the synthetic track data generate realistic data from

a statistician’s perspective. In our case, we showed that

for winds exceeding m the maximum yearly wind speed

distribution matches what one would expect from an ac-

tual physical process where the maximum yearly wind

speed generally follows a GEV distribution.

Although agreement between the empirical proba-

bility functions derived here and GEV distributions is

excellent, there may nevertheless be some advantages to

the former. Given enough events to make reasonable

estimates of P(u) in (8), the quasi-empirical approach

used here requires only one free parameter, the poten-

tial intensity yp, which can be estimated from observed

distributions of the circular wind component of histori-

cal storms. Extreme-value approaches are more sensi-

tive to the maximum observed value in the data to which

they are fit than is the approach presented here.

4. Application

To apply the technique described herein to a given

tropical-cyclone dataset, one would take the following

steps to estimate return periods of maximum storm

winds:

1) From a dataset of maximum tropical-cyclone wind

speeds in storms affecting a particular region, first

estimate the circular component of the wind speeds

by subtracting 60% of the translation speed from

the maximum ground-relative wind speed.

2) Retain from above only those events whose maxi-

mum circular wind speeds exceed about 65 kt.

3) Estimate the probability density f(y) of circular

winds from step 2.

4) Solve the regression equation log(y) 5 a 1 bf(y) for

the coefficients a and b. The optimum potential in-

tensity is then just exp(a).

5) Use (7) and the optimum potential intensity to

estimate the normalized probability of maximum

circular storm winds.

6) Estimate the probability density of 60% of the storm

translation speeds.

7) Convolve the probability density from step 5 with

that from step 6 using (6).

8) Find the cumulative probability by summing the

result of step 6.

9) Find the annual probability Pyear by multiplying the

cumulative probability P(X . x) from step 8 by the

observed overall annual rate r from the event set

and then find the annual probability using

P
year

(X . x) 5 1� exp[�rP(X . x)].

10) If desired, the return period in years is then the in-

verse of the result of step 9.

11) Pointwise confidence limits can be found by first

finding the confidence intervals on the annual rate

r assuming that the rate is drawn from, say, a Pois-

son distribution, and then repeating steps 9 and 10

using the limiting rates. Calculate the difference

between these confidence limits and the best esti-

mate found in step 9. Then, in solving the regression

equation in step 4, calculate confidence limits of the

potential intensity and repeat steps 5–10 using the

limiting values of potential intensity; again calculate

the difference between these limits and the best es-

timate found originally in step 9. Estimate the net

confidence limits as the square root of the sum of the

squares of the differences found above and use step

10 to find the associated return periods.

Figure 4 shows the results of applying this procedure

to the historical data only for New Orleans, Miami, and

the coast of New England. These results can be com-

pared with those based on the much larger numbers of

synthetic tracks shown in Fig. 2. In general, the estimates

based strictly on historical data line up well with those

based on the larger set of synthetic tracks, except in the

case of New England storms, for which deductions based

only on historical data yield longer return periods of

high-intensity events. Note also that the most intense

event in the New England case lies outside the 95%

confidence bounds. This was a storm that intercepted

a coastal gate that extends well east of Cape Cod, and

represents Hurricane Gerda of 1969, which passed well

to the southeast of New England but qualifies as a New

England coastal event under the selection criteria we

used.

5. Summary

Open-ocean hurricane statistics suggest that the cir-

cular component y of storm winds obeys a probability

distribution proportional to ln(yp/y), where yp is an up-

per bound, which may be determined empirically from

TABLE 1. Parameter values used in (8).

Miami New Orleans New England

m (kt) 83 64 64

r (events per year) 0.105 0.101 0.105

sm (kt) 35 36 24

j 20.38 20.37 20.31
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historical hurricane data. This will also describe the

probability density of winds at landfall, if it can be as-

sumed that landfall occurs at a random phase of the

storm’s lifetime. Convolving this with an empirically

determined probability that an empirical fraction of

the storm’s translation speed is u yields an expression

for the probability density of maximum landfall wind

speed, from which a return period for that wind speed

can be derived. Such an expression should cover the

entire range of hurricane wind speeds, and the results,

presented in Figs. 2 and 4, suggest that the underlying

assumptions are valid. This provides a means of ex-

trapolating finite hurricane wind data to large return

periods and, as shown in Fig. 3, is fully consistent with

extreme-value theory, whose application to hurricane

return periods has been described in detail by Jagger and

Elsner (2006). The technique described here should,

however, yield probability densities that are valid over

the whole range of hurricane winds and requires only a

single quasi-empirical parameter—the upper bound on

the circular wind speed yp. The procedure for estimating

return periods using our technique is summarized in

section 4.

The results presented here pertain to maximum winds

within storms passing through certain defined regions;

return periods for winds at a fixed point can be derived

if the distribution of surface winds within a storm is

known.
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