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ABSTRACT

Tropical cyclones intensify and are maintained by surface enthalpy fluxes that result from the thermody-

namics disequilibrium that exists between the tropical oceans and atmosphere. While this general result has

been known for at least a half century, the detailed nature of feedbacks between thermodynamic and dynamic

processes in tropical cyclones remains poorly understood. In particular, the spatial relationship between

surface fluxes and the radial entropy distribution apparently does not act to amplify the entropy gradient and

therefore the surface winds. In previous work, this problem was addressed by accounting for the radial dis-

tribution of convective fluxes of entropy out of the boundary layer; this led to the conclusion that a radial

gradient of such convective fluxes is necessary for intensification.

Part I showed that the assumption of constant outflow temperature is incorrect and argued that the thermal

stratification of the outflow is set by small-scale turbulence that limits the Richardson number. The as-

sumption of Richardson number criticality of the outflow allows one to derive an equation for the variation of

outflow temperature with angular momentum; this in turn leads to predictions of vortex structure and in-

tensity that agree well with tropical cyclones simulated using a full-physics axisymmetric model. Here it is

shown that the variation of outflow temperature with angular momentum also permits the vortex to intensify

with time even in the absence of radial gradients of entrainment into the boundary layer. An equation is

derived for the rate of intensity change and compared to simple models and to simulations using a full-physics

model.

1. Introduction

Tropical cyclones are a form of natural heat engine

that absorb enthalpy from the ocean at the relatively

high temperatures of the tropical sea surface and eject it

at the very low temperatures of the tropical tropopause

layer (Riehl 1950; Emanuel 1986). Large rates of en-

thalpy transfer from the sea surface are made possible by

the thermodynamic disequilibrium that exists between

the tropical oceans and atmosphere, a consequence of the

greenhouse effect (Emanuel 2007). The rapid dissipation

of tropical cyclones once they move over land testifies to

the essential role of local sea–air enthalpy transfer (as

opposed to ambient convective available potential energy)

in maintaining the storms.

While the overall energetics of tropical cyclones are

reasonably well understood, the details of the processes

by which existing storms intensify are less so. The author

(Emanuel 1997, hereafter E97) attempted an examina-

tion of these processes using a highly simplified model in

which the vortex is considered to be nearly in hydro-

static and gradient wind balance at all times, in a state of

neutrality to slantwise moist convection, and bounded

at the top by a well-developed anticyclone. This work

showed that the eyewall region is highly frontogenetic

and that without nonaxisymmetric turbulence, frontal

collapse would take place and limit further intensifica-

tion of the storm. Another significant—but disturbing—

finding of E97 was that the phase relationship between

surface enthalpy fluxes and the existing radial distribu-

tion of boundary layer entropy does not, by itself, allow

for the intensification of the vortex. In essence, the ra-

dial distribution of surface enthalpy fluxes does not act

to increase the magnitude of the radial gradient of en-

tropy, a direct measure of the intensity of the storm. E97

argued that a plausible radial gradient of convective

entropy fluxes out of the boundary layer is needed to

allow intensification. He introduced a factor b multi-

plying the local entropy tendency and showed that
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a radial gradient of b across the eyewall region is nec-

essary for intensification. The lack of an explicit closure

for convective entropy fluxes out of the boundary layer

is a decided limitation of that work.

A common assumption used in constructing the bal-

anced, convectively neutral vortices used in E97 and

other works is that all the streamlines emanating from

the boundary layer asymptote to the undisturbed envi-

ronmental entropy surfaces matching the saturation

entropy of the streamlines, and that these surfaces can

be assumed to lie in the lower stratosphere at approxi-

mately constant absolute temperature. Recently, Emanuel

and Rotunno (2011, hereafter Part I) demonstrated that in

numerically simulated tropical cyclones, the assumption

of constant outflow temperature is poor and that, in the

simulations, the outflow temperature increases rapidly

with angular momentum. They postulated that the abso-

lute temperature stratification of the outflow is deter-

mined by small-scale turbulence that limits the Richardson

number to a critical value for the onset of turbulence, and

showed that such an assumption leads to an equation for

the outflow temperature as a function of absolute angular

momentum M:

›To

›M
ffi2

Ric
r2

t

dM

ds*

� �
, (1)

where To is the outflow temperature, s* is the saturation

entropy, Ric is the critical Richardson number, and rt is

the physical radius at which the Richardson number first

attains its critical value. Based mostly on analysis of

numerical simulations using the model of Rotunno and

Emanuel (1987, hereafter RE87), Part I applied to (1)

the boundary condition that To is equal the ambient

tropopause temperature Tt for the particular streamline

emanating from the boundary layer at the radius of

maximum winds. When coupled with the thermal wind

relation and equations for the evolution of entropy and

angular momentum in the boundary layer, (1) yields so-

lutions for the intensity and structure of mature, steady-

state vortices that are in good accord with simulations

using the RE87 model.1

We remark that the boundary condition applied to

(1), To 5 Tt at the angular momentum surface corre-

sponding to the radius of maximum winds, has at present

no theoretical justification. We use it here because, em-

pirically, it well describes the outflow temperature dis-

tribution in the numerical simulations reported in Part I

(see, in particular, Fig. 5 therein). This boundary condi-

tion also corresponds to essentially no outflow into the

ambient stratosphere where, owing to the high static

stability present there, outflow would presumably need to

do more work against the twin constraints of stratification

and rotation. We leave for future work a more rigorous

treatment of the important boundary condition need to

solve (1).

The importance of the outflow temperature in the sys-

tem can easily be seen in the structure of the thermal wind

equation for a well-developed, balanced, convectively

neutral vortex specialized to the case in which the vorticity

is large compared to the Coriolis parameter [see (12) of

Part I]:

Vb

rb

52(Tb 2 To)
ds*

dM
, (2)

where Vb, rb, and Tb are respectively the azimuthal ve-

locity, physical radius, and absolute temperature eval-

uated at the top of the boundary layer. When this is

coupled with equations governing the evolution of an-

gular momentum and entropy in the boundary layer, an

equation for the wind speed itself results (see Part I):

V2
b ffi

Ck

CD

(Tb 2 To)
(k0

* 2 k)

Ts

, (3)

where Ck and CD are the dimensionless exchange co-

efficients for enthalpy and momentum, k0
* and k are the

saturation enthalpy of the sea surface and actual en-

thalpy of the boundary layer, and Ts is the sea surface

temperature. With constant To, (3) would predict a

highly unrealistic radial structure of the azimuthal ve-

locity. But with To determined using (1), quite reason-

able radial profiles of Vb are obtained. Moreover, the

magnitude of the maximum value of Vb (which depends,

among other things, on the value of k at the radius of

maximum winds, which must be determined as part of

the complete solution of the system) depends in realistic

ways on environmental conditions and on the values of

Ck and CD (see Part I).

Our present purpose is to demonstrate that allowing

the outflow temperature to vary according to (1) also

results in a more realistic picture of the intensification of

tropical cyclones and allows one to dispense with the b

factor introduced by E97. The next section derives

equations for the intensification of tropical cyclones

starting from well-developed vortices, parallel to E97

but allowing for variable outflow temperature. These

1 Note that in integrating (1), Part I held rt constant. We will

make this assumption here as well, but note that the results may

show some sensitivity to this assumption. A more thorough ex-

ploration of this assumption is left to future work. Note also that (1)

is not expected to apply in the outer region of the vortex, where

there is mean radial inflow and downflow. This issue is discussed

more extensively in Part I.
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equations are then specialized in section 3 to the inner

core region and an approximate analytic formula for the

time evolution of the maximum wind speed is derived.

Section 4 presents numerical solutions of the full equa-

tions and compares them to the simple analytic equation

for the maximum wind speed. Comparisons to simula-

tions using the RE87 model will also be made. These

results will be discussed and summarized in section 5.

2. Time-dependent system

Following E97, we assume that the time scale of trop-

ical cyclone intensification is long enough that the vortex

(above the boundary layer) can be considered to evolve

through a sequence of quasi-balanced states for which the

thermal wind equation, based on hydrostatic and gradient

wind balance, always applies. The complete form of the

thermal wind equation [omitting the assumption of large

vorticity used in deriving (2)] can be written (cf. Emanuel

1986)

M

r2
b

5
M

r2
o

2 (Tb 2 To)
ds*

dM
, (4)

where ro is the physical radius of an angular momentum

surface at the point where the absolute temperature is

To. Following Part I, we define that point as the point

along the angular momentum surface at which the azi-

muthal velocity changes sign. At that point, by defini-

tion, M 5 (1/2)fr2
o and so we can write (4) in the form of

an equation for r2
b:

r2
b 5

M

(1/2)f 2 (Tb 2 To)(ds*/dM)
. (5)

Given rb from (5), the azimuthal velocity may be found

from the definition of M [i.e., V 5 M/r 2 (1/2)fr]. To close

the system, we need to determine s* and To as functions

of time and M. To do this we separate the radial structure

of the vortex into two distinct regions: the eye and the rest

of the system. Following one of the three cases examined

in E97, we assume that the eye is in solid body rotation

and determine the distribution of saturation entropy

there using the high-vorticity approximation to (4)

given by (2). In the rest of the vortex, we assume, as did

E97, that the saturation entropy in the free atmo-

sphere (along angular momentum surfaces) equals

the actual entropy of the boundary layer sb. The latter

is determined through an evolution equation written in

angular momentum coordinates (see Part I):

›sb

›t
1 _M

›sb

›M
5 g

›F

›P
1 D, (6)

where _M is the total time derivative of angular mo-

mentum, F is the vertical turbulent flux of entropy, and

D represents the irreversible entropy sources owing to

kinetic energy dissipation, nonequilibrium evaporation

of liquid water, and diffusion of water vapor. The an-

gular momentum source may be derived from the azi-

muthal momentum equation:

_M 5 gr
›t

u

›P
, (7)

where tu is the tangential stress and we have neglected

advection of entropy along angular momentum surfaces

in the boundary layer. Substituting (7) into (6) and inte-

grating over the pressure depth of the boundary layer Dpb

yields

Dpb

›sb

›t
1 grt

us

›sb

›M
5 gFs 1 D, (8)

where tus is the azimuthal surface stress, Fs is the surface

enthalpy flux divided by the surface temperature, and D

represents the irreversible entropy sources integrated in

pressure over the boundary layer. Note that, in contrast

to E97, we omit any turbulent entropy fluxes out of the

top of the boundary layer; nor do we include any effects

of vertical advection into the boundary layer. We do this

deliberately to focus on the role of varying outflow tem-

perature. Likewise, E97 showed that varying boundary

layer depth could yield intensification. Our boundary

layer depth could be interpreted as the ‘‘thermodynamic

boundary layer depth’’ in the terminology of Zhang

et al. (2011), who showed from detailed boundary layer

observations of hurricanes that this boundary layer depth

generally increases with radius in hurricanes, although

probably not fast enough to yield intensification accord-

ing to the E97 model. Here again we ignore this effect of

varying boundary layer depth so as to focus on the effects

of variable outflow temperature, noting that in any case

variable Dpb cannot contribute to the steady-state struc-

ture as it multiplies a local time derivative.

We use the neutral aerodynamic flux formulas for tus

and Fs:

Fs 5
CkrjVj(k0

* 2 kb)

Ts

ffi CkrjVj(s0
* 2 sb) (9)

and

t
us 5 2CDrjVjV, (10)

where r is the surface air density, jVj is the wind speed,

kb is the actual enthalpy of air at the reference level at

which the wind speed and exchange coefficients are
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defined, and the other terms are defined above. In (9) we

introduce the reasonable approximation that k
0
* 2 k

b
ffi

T
s
(s

0
* 2 s

b
), where s

0
* is the saturation entropy of air at

sea surface temperature and pressure.2 Following Bister

and Emanuel (1998), we represent the vertically inte-

grated dissipative heating as

D ffi gr
CDjVj

3

Ts

. (11)

Substituting (9)–(11) into (8) yields

h
›sb

›t
2 CDrjVjV

›sb

›M
5 CkjVj(s0

* 2 sb) 1 CD

jVj3

Ts

, (12)

where h is a boundary layer depth scale defined as

h [
Dpb

rg
.

In this simple system, the entire time dependence is

contained in (12), the evolution equation for boundary

layer entropy. Except in the eye, we are assuming that

s* 5 sb, a condition for slantwise convective neutrality.

We define the eye as the region inside the radius of

maximum winds and assume solid body rotation there.

We also assume that the outflow temperature is equal

to the ambient tropopause temperature everywhere at

and inside the radius of maximum winds, following Part

I. We then use (2) together with the assumption of solid

body rotation to calculate the saturation entropy every-

where inside the radius of maximum winds, using as a

boundary condition s* 5 sb at the radius of maximum

winds. Note that we solve (12) everywhere, including in

the eye, though in this case the boundary layer entropy is

decoupled from (and is less than) the saturation entropy

above the boundary layer.

We now have a closed system consisting of (12), (5),

and (1) together with V 5 M/r 2 (1/2)fr, the boundary

condition that To 5 Tt at and inside the radius of max-

imum winds, and the condition of solid body rotation

inside the radius of maximum winds. As demonstrated

by E97, imposing this solid body rotation in the eye

(equivalent to having large horizontal turbulent mixing)

prevents formation of a discontinuity resulting from

eyewall frontogenesis. We also apply s* 5 sb, except in

the eye, and following Part I take rt in (1) to be a constant.

In some ways this system is analogous to the classical

quasigeostrophic Eady model. As in the Eady case, an

invertible, potential vorticity–like quantity, the satura-

tion potential vorticity, is assumed to be constant ev-

erywhere (and zero in this case, corresponding to slantwise

convective neutrality). Also as in the Eady problem, all

the time dependence enters through a conservation equa-

tion for entropy at the boundaries, although in this case

a time-dependent equation obtains only for the lower

boundary. The upper boundary condition is given by (1)

and is diagnostic, not prognostic. Other important differ-

ences from the Eady problem are the circular geometry,

the advection of entropy by the Ekman flow rather than by

the balanced flow, and the essential importance of surface

fluxes in the budget of boundary entropy.

In section 4 we will present numerical solutions to this

system. Before we do so, we will examine an approxi-

mation to this system, valid in the inner core, and use it

to argue for the essential importance of the radial vari-

ation of the outflow temperature given by (1) for the

intensification of tropical cyclones.

3. Approximate system

Following E97, we derive an approximation to the

system described in section 2 that is valid in the inner

core region, where the relative vorticity is much larger

than the Coriolis parameter. In that case, (5) reduces to

the approximate form (2) and we can assume that M ’
rV. In addition to this, we apply further approximations:

(a) neglect the pressure dependence of s0
* that appears

in (12);

(b) neglect dissipative heating, the last term in (12);

(c) approximate both jVj and V in (12) by the gradient

wind at the top of the boundary layer, which for

simplicity we will simply denote as V; and

(d) approximate the thermodynamic boundary layer

depth h as a constant.

As we apply these approximations in the eyewall region,

we assume that sb 5 s*. Then our approximate system is

V2 5 2(Tb 2 To)M
›s*

›M
, (13)

›To

›M
5 2

Ric
r2

t

›s*
›M

� �
21

, (14)

h
›s*

›t
2 CDVM

›s*

›M
5 CkV(s0 2 s*), (15)

where s0 is the environmental (constant) saturation en-

tropy of air at sea surface temperature and ambient

surface pressure.

2 The effects of irreversible evaporation and diffusion of water

vapor could be accounted for by replacing Ts in this equation by Tb,

the temperature at the top of the subcloud layer, but we neglect this

small difference here.
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While the system (13)–(15) does not appear to have an

analytic solution, certain features of the behavior of the

solutions can be exposed by first differentiating (15) with

respect to M, using (13) to eliminate ›s*/›M, and using

(14) for ›To/›M. The result is

(Tb 2 To)h

V

›

›t

V2

Tb 2 To

� �
5

M

V

›V

›M
[3CDV2

2 Ck(Tb 2 To)(s0 2 s*)]

1 CD

Ric
r2

t

M2 2 CkV2.

(16)

This is not a closed expression owing to the appearance

of s* in the first term on the right as well as to the de-

pendence of To on s* through (14). The important con-

clusion to be drawn from (16) is that at the radius of

maximum wind, where To 5 Tt and ›V/›M 5 0, the time

tendency of azimuthal wind would be negative were it

not for the second term on the right-hand side of (16),

which arises [through (14)] from the radial gradient of

outflow temperature. Thus, in this formulation the am-

plification of the vortex depends on the radial gradient

of outflow temperature, which in turn, according to the

results of Part I, is a result of small-scale turbulence in

the outflow region.

A casual glance at (16) would appear to suggest that

the amplification rate varies positively with the drag co-

efficient but negatively with the enthalpy exchange co-

efficient. But without solving the whole system we do not

know in advance the angular momentum value Mmax at

which the maximum azimuthal velocity occurs. We do

know, from Part I, what the steady-state solution to (16)

is, including the maximum azimuthal velocity Vmax. If we

assume, provisionally, that Mmax is constant in time (i.e.,

that the radius of maximum winds always lies on the same

angular momentum surface) then Mmax ’ rmaxVmax,

where rmax is the radius of maximum winds in the steady

state. According to (43) of Part I, r2
max 5 r2

t (C
k
/C

D
)Ri21

c ;

thus, at the radius of maximum winds, if the angular

momentum there is constant, (16) becomes

›Vm

›t
ffi

Ck

2h
(V2

max 2 V2
m), (17)

where Vm is the maximum value (over radius) of the azi-

muthal wind at any given time, and Vmax is the steady-state

maximum wind whose value (as a function of environ-

mental and other physical parameters) is given in Part I:

V2
max 5

Ck

CD

1

2

Ck

CD

� �(C
k
/C

D
)/[22(C

k
/C

D
)]

(Tb 2 Tt)(s0 2 se*),

(18)

where se* is the value of s* in the undisturbed envi-

ronment.

The solution of (17), given an initial condition V 5 0 at

t 5 0, is

Vm(t) 5 Vmax tanh
CkVmax

2h
t

� �
. (19)

If this is valid, then the rate of intensification depends

primarily on Ck, with CD entering only insofar as it af-

fects Vmax through (18). As we will show in the next

section, the numerical solutions of the full system con-

form reasonably well to (19).

4. Numerical solutions and comparison with
simulations using the RE87 model

The system consisting of (1), (5), and (12), together with

V 5 M/r 2 (1/2)fr and the boundary condition To 5 Tt at

and inside the angular momentum value corresponding to

the radius of maximum wind, is solved numerically using

a simple procedure. The sole time-dependent equation

(12) is stepped forward using a leapfrog scheme with

an Asselin filter applied to prevent time splitting. This

yields the boundary layer entropy as a function of angular

momentum and time. The location MV of the maximum

value of 2ds/dM is noted; according to (2) this is also

the location of maximum angular velocity V/r. [This will

generally occur inside the radius of maximum winds,

where To is held fixed at the value Tt that attains at the

radius of maximum winds; thus we need not be con-

cerned with maximizing 2(Tb 2 To)ds/dM.] Outside

MV we assume that the saturation entropy above the

boundary layer equals the boundary layer entropy. In-

side MV we assume solid body rotation, which from (2) is

equivalent to assuming that ds*/dM is constant. We take

its constant value to be the value of ds/dM at MV, so that

the angular velocity (but not the vorticity) is continuous

across MV. Having thus determined the distribution of

s and s*, we solve (1) by integrating outward from MV;

this yields the distribution of To outside of MV. (Inside

MV, we assume that To 5 Tt, the ambient tropopause

temperature.) Finally, we use (5) together with V 5 M/r 2

(1/2)fr to diagnose the physical radius r and V.

The entropy equation (12) entails a globally averaged

source of entropy to the atmosphere. To reach a steady

state, we add a constant sink of entropy meant to rep-

resent radiative cooling.3 To facilitate comparison to the

3 Literally, radiative cooling of the boundary layer. But since the

boundary layer entropy is tied to the tropospheric saturation en-

tropy in regions of convection, this sink might equally well be re-

garded as operating in the free troposphere.
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simplified model developed in section 3, we omit the

pressure dependence of the sea surface entropy in (12).

Also, for numerical stability, we relax the outflow tem-

perature toward the value given by integrating (1) rather

than strictly enforcing (1). We use a relaxation time con-

stant of 1 day for this purpose. The simulation is initial-

ized with a weak warm-core vortex given by

s* 5 si
* 2 (si

* 2 se
*)[1 2 e2a(M/M

o
)2

], (20)

where si
* is the maximum value of saturation entropy,

achieved at the center of the vortex, se
* is the saturation

entropy of the unperturbed environment, Mo is a refer-

ence value of angular momentum, and a is a constant

that determines the size of the initial vortex. Starting

from this initial condition, the system is integrated until

an approximate steady state is achieved. Solutions are

not sensitive to the initial intensity of the vortex as rep-

resented here by si
* 2 se

*; nor are they sensitive to the

value of a unless it is too small, corresponding to too large

an initial vortex (as discussed, for example, in RE87).

It should be remarked that through a suitable nor-

malization of the dependent and independent variables

of this system, it can be shown that, aside from param-

eters related to radiative cooling and the initial condi-

tion, the nondimensional system behavior is governed

by only two nondimensional parameters. If we define a

velocity scale Vp such that

V2
p [ (Tb 2 Tt)(s0 2 se

*),

and scale all length scales by Vp /f and time by h /CkVp,

the two governing nondimensional parameters are

Cr [
Ck

CD

and a [
RicV2

p

r2
t f 2

. (21)

As shown in Part I, Cr affects both the intensity and the

shape of the vortex, while a is a size parameter affecting

the dimensions of the vortex. According to Part I, there

is a well-defined steady-state solution that depends on Cr

and a but not the initial condition (except insofar is it

affects rt).

Bearing in mind that the fundamental nature of the

solutions depends on the nondimensional parameters

given by (21), we nonetheless present solutions in di-

mensional form for ease of interpretation. Experiments

show that the intensity evolution is insensitive to a as

long as it is sufficiently large, corresponding to an outer

vortex radius much smaller than Vp/f. This is broadly

consistent with the findings of RE87, who showed that

the nature of the simulations is not terribly sensitive to

vortex size as long as it is not too large. In the results

presented here, we set a 5 500.

Figure 1 compares the time evolution of the maximum

wind speed to the analytic approximation (19) for three

values of Cr. For the purposes of this figure, Cr has been

varied by varying CD so as to keep the dimensional time on

the same scale. Again for dimensional display purposes,

we set Vp to 84 m s21, f 5 5 3 1025 s21, and h 5 5000 m.

Note that in view of the approximations underlying

(19) and the addition of radiative cooling and temper-

ature relaxation to the numerical simulation, there is no

reason to expect the numerical solutions to be identical

to (19). Nonetheless, (19) clearly captures most of the

characteristics of the time evolution of the simulated

azimuthal wind. (Note that if the simulations are ex-

tended in time, a true steady state is achieved.)

Figure 2 compares the steady-state solution using

Cr 5 1 to that obtained in Part I, where a good analytic

approximation to the steady solution of (1), (5), and (12)

is developed. The small differences may be owing to the

constant cooling applied to the time-dependent model.

The profile in the outer region drops off too sharply

compared to storms numerically simulated using the

RE87 model. This is likely a result of the fact that (1)

cannot be expected to apply in the outer region (see Part

I), and the circumstance that the RE87 model uses

Newtonian damping of temperature back to the initial

state, thereby underestimating radiative cooling in the

outer region (Hakim 2011). Since Ekman suction must

FIG. 1. Evolution with time of the peak azimuthal wind in the

numerical simulations (solid) compared to the analytic approxi-

mation (19) (dashed) for three values of the ratio of exchange

coefficients and with a 5 500. In these simulations, the drag co-

efficient has been varied to control the variation of the ratio of

exchange coefficients.
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balance radiative subsidence in the outer region, this

entails too shallow a profile of azimuthal velocity there.

As a test of whether the simple intensification model

presented here captures the essential ingredients of

storm amplification, we compare these results to simu-

lations performed using the nonhydrostatic, axisym-

metric model of RE87, modified to ensure that the

difference equations conserve energy. We use the same

parameter settings as described in Part I, but to facilitate

comparison with the simple model we omit the pressure

dependence of the saturation specific humidity of the sea

surface, omit dissipative heating, and omit the wind

dependence of the surface exchange coefficients. The

vertical and horizontal mixing lengths in these simula-

tions are both set to 1000 m (as in Part I); these are large

enough to prevent the boundary layer flow from be-

coming appreciably supergradient (Persing and

Montgomery 2003; Bryan and Rotunno 2009).

The model developed here assumes that the initial

vortex is already well developed, in the sense that the

core is already saturated with water vapor and a well-

developed anticyclone exists near the tropopause. By

contrast, the vortex used to initialize simulations using

the RE87 model is not saturated anywhere and has no

anticyclone at the tropopause. For these reasons, the

starting vortex initially decays with time, until Ekman

pumping has sufficiently moistened the inner core of the

disturbance, at which time intensification begins. In these

simulations, we subjectively determined an ‘‘ignition time’’

at which real intensification commences.

Figure 3 compares (19) with subjectively determined

ignition times to the time evolution of maximum wind

speed in the RE87 simulations. Figure 3a shows the re-

sults of varying the drag coefficient while holding the

enthalpy exchange coefficient constant, while in Fig. 3b,

the drag coefficient is held fixed while the enthalpy ex-

change coefficient varies. In calculating the evolution

from (19), the boundary layer depth was chosen to yield

a good fit to the single case C
D

5 C
k

5 1 3 1023 but held

at that value for all the other cases. Note that changing

the boundary layer depth is equivalent, through (12), to

changing the values of Ck and CD simultaneously. The

maximum wind speed used in (19) was calculated using

(18). Agreement is reasonably good, except in the case

C
D

5 4 3 1023, C
k

5 2 3 1023, in which case the RE87

FIG. 2. Radial profile of azimuthal velocity from the steady-state

model of Part I (solid) and at day 12 in the simulation using the

time-dependent model (dashed); in both cases Cr 5 1. The radius

has been normalized by the radius of maximum winds and the

azimuthal wind has been normalized by its maximum value.

FIG. 3. Evolution with time of the domain maximum azimuthal wind in simulations using the RE87 model (solid),

compared with solutions of (19) (dashed), varying (a) the drag coefficient and (b) the enthalpy exchange coefficient.

Curves are labeled with the values of the exchange coefficients in units of 1023.
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model reaches a higher intensity than predicted and

does so somewhat more rapidly during the last phase of

intensification.

5. Discussion and summary

While there is compelling evidence that tropical cy-

clones intensify and are maintained by surface enthalpy

fluxes, previous work demonstrated that the spatial re-

lationship between surface enthalpy fluxes and satura-

tion entropy does not conduce to intensification. E97

showed that this problem can be alleviated by invoking

a radial gradient of turbulent entropy fluxes out of the

boundary layer in the region near the eyewall, but it is

not clear from models or observations whether the re-

quired gradients actually exist. Moreover, it would be

difficult to argue that such fluxes play any important role

in the evolution of dry, surface flux–driven vortices as

have been simulated recently by Mrowiec et al. (2011).

Here we showed that even in the absence of radial

gradients of turbulent entropy fluxes out of the bound-

ary layer, tropical cyclones can intensify owing to gra-

dients of outflow temperature across the eyewall. In Part

I of this pair of papers, we showed that in numerical

simulations of tropical cyclones, such outflow tempera-

ture gradients do exist and are consistent with the hy-

pothesis that outflow thermal stratification is determined

by small-scale turbulence that acts to prevent the Ri-

chardson number from falling below a critical value. We

also demonstrated that this hypothesis leads to predic-

tions of storm intensity and structure that are in good

agreement with numerical simulations. Here we show

that, in addition, the critical Richardson number hy-

pothesis leads to predictions of storm evolution that are

also, for the most part, in good accord with numerical

simulations.

The basic physics at work here have to do with the

spatial relationship between surface fluxes of entropy,

which are partially controlled by surface wind speed,

and the existing gradient of entropy. The thermal wind

relation for a well-developed vortex, given by (2), shows

that the surface wind speed is proportional to the gra-

dient of entropy with respect to angular momentum

multiplied by Ts 2 To and weighted by physical radius.

But for the entropy gradient to amplify, the entropy flux

from the surface must itself have a radial gradient that is

correlated with the existing radial entropy gradient.

(The amplification of the radial entropy gradient, cor-

responding through the thermal wind relation to ampli-

fication of the azimuthal wind, may also be interpreted as

an increase in the available potential energy of the sys-

tem.) Thus, for the storm to amplify, the surface entropy

flux must have a radially inward gradient across the radius

of maximum winds. The entropy flux is proportional to

the product of the surface wind speed and the air–sea

entropy difference. The latter generally increases with

radius and so works in the wrong direction in weighting

the entropy fluxes toward smaller radii. If To were

constant, then according to (2) the surface wind speed

would be a maximum outside the radius where the

entropy gradient has its maximum (negative) value,

and thus the radial gradient of surface fluxes across the

radius of maximum wind would be of the opposite sign

as the existing entropy gradient and the vortex would

decay.

In E97 it was proposed that the missing ingredient is

turbulent fluxes of entropy out of the boundary layer. If

there is a sufficiently strong gradient of these across the

radius of maximum winds, then the radial gradient of

net entropy tendency can be negative at the radius of

maximum winds, leading to an amplification of the en-

tropy gradient and thus of the maximum wind itself. E97

also showed that a positive gradient in thermodynamic

boundary layer depth across the radius of maximum

winds could lead to intensification of the system by ac-

celerating the increase in boundary layer entropy at

small radii.

In the present paper, we neglect any radial gradient of

boundary layer depth or turbulent entropy flux out of

the boundary layer and focus on the factor Ts 2 To that

appears in (2) (and which was held constant in E97).

This is essentially the integration constant that appears

in integrating the thermal wind relation down from the

temperature To at which the azimuthal wind vanishes

(by definition). If this outflow temperature increases

across the radius of maximum winds rm (as they should,

by definition), as is true here, then by (2) the surface

winds decrease across rm (as they should, by definition),

causing the required negative gradient in surface entropy

flux so that the magnitude of the gradient can amplify.

Thus, a negative gradient of the outflow temperature

across the angular momentum surface corresponding to

the radius of maximum winds, as observed in the nu-

merical simulations reported in Part I, can allow a vortex

to amplify even in the absence of radial gradients of

turbulence entropy fluxes out of the boundary layer.

If the findings of Part I and the present paper with-

stand scientific scrutiny, it will be a remarkable fact that

major properties of tropical cyclones, including their

intensity, structure, and temporal evolution, all depend

on small-scale turbulence in the outflow regions of the

storms, which acts to set the thermal stratification of the

outflow.
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