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Low-Probability Flood Risk Modeling for New York City

Jeroen C. J. H. Aerts,1 Ning Lin,2 W. J. Wouter Botzen,1 Kerry Emanuel,3

and Hans de Moel1

The devastating impact by Hurricane Sandy (2012) again showed New York City (NYC) is
one of the most vulnerable cities to coastal flooding around the globe. The low-lying areas in
NYC can be flooded by nor’easter storms and North Atlantic hurricanes. The few studies that
have estimated potential flood damage for NYC base their damage estimates on only a single,
or a few, possible flood events. The objective of this study is to assess the full distribution of
hurricane flood risk in NYC. This is done by calculating potential flood damage with a flood
damage model that uses many possible storms and surge heights as input. These storms are
representative for the low-probability/high-impact flood hazard faced by the city. Exceedance
probability-loss curves are constructed under different assumptions about the severity of
flood damage. The estimated flood damage to buildings for NYC is between US$59 and 129
millions/year. The damage caused by a 1/100-year storm surge is within a range of US$2 bn–5
bn, while this is between US$5 bn and 11 bn for a 1/500-year storm surge. An analysis of
flood risk in each of the five boroughs of NYC finds that Brooklyn and Queens are the most
vulnerable to flooding. This study examines several uncertainties in the various steps of the
risk analysis, which resulted in variations in flood damage estimations. These uncertainties
include: the interpolation of flood depths; the use of different flood damage curves; and the
influence of the spectra of characteristics of the simulated hurricanes.
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1. INTRODUCTION

The devastating impact by Hurricane Sandy
(2012) again showed New York City (NYC) is one of
the most vulnerable cities to coastal flooding around
the globe, in terms of both the probability of being
hit by a major storm surge and the potential conse-
quences.(1) Storm surges and related coastal flood-
ing are mainly caused by strong winds that pile up
water along the shore and generate large waves. A
large proportion of NYC and the surrounding re-
gion lie less than ∼3–4 m (10–13 ft) above mean
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sea level, while some floodwalls are even lower than
1.5 m (∼3.3 ft).(2) Both houses and infrastructure
in these low-lying areas are vulnerable to coastal
flooding from nor’easter storms in winter or North
Atlantic hurricanes in the summer period. While hur-
ricanes are much less frequent than nor’easters on
the eastern seaboard of the United States, they can
be more destructive, and it has been recorded that
15 hurricanes have struck NYC since the year 1815
with a strength of category 3 and above on the Saffir-
Simpson scale.(2)

Flood risk for NYC may be quantified by the
probabilities of flood events (or return periods) and
their potential consequences,(3,4) and is usually ex-
pressed in monetary terms (e.g., US$/year). The
risk indicator resulting from the product of the
probability and damage of a single flood event is
the expected annual event damage (EAED). This
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indicator has, for instance, been calculated for the
NYC-Newark region by Nichols,(5) who estimates the
current risk from flooding to be US$3.2 bn/year.
However, this risk estimate is not very informative
because it only considers one event: namely, a 1/100-
year storm. Other events may result in different es-
timates of the EAED, and events with lower and
higher return periods than 1/100 also contribute to
the overall risk.(6–10) The importance of addressing
the full distribution of possible hurricane storm surge
events is illustrated by Lin et al.,(11,12) who apply sim-
ulation methods to assess the probability distribu-
tion of storm surges in NYC, and find a heavy tail
for low-probability extreme events. With such a full
distribution of events, the expected annual damage
(EAD)—which is often referred to as “risk”—can be
calculated more accurately than it has been in exist-
ing studies that have used the standard (often ideal-
ized) flood events and their impact areas, as mapped
in the United States by the Federal Emergency Man-
agement Agency (FEMA).4(1,13) The complete dis-
tribution of risk can be calculated in two steps: (1)
flood damage for different events is estimated and
used to establish what is called an annual exceedance
probability-loss (EPL) curve, which gives for differ-
ent return periods the corresponding flood damage
estimate; (2) the EAD is then calculated by esti-
mating the area (i.e., the integral) under the EPL
curve.(14) Such EPL curves and corresponding esti-
mates of EAD are of particular importance to in-
surance companies for their financial risk manage-
ment, and for deriving premiums.(15–17) In addition,
policymakers who plan to invest in flood manage-
ment measures need to consider the EAD when as-
sessing current risk levels and calculating the benefits
(expressed as “the reduced EAD”) of flood risk man-
agement strategies.

The main objective of this article is to develop
a new methodology to assess the full distribution of
flood risk, as represented by EPL curves and EAD,
and to apply this methodology to NYC. To construct
the EPL curves, we combine several models and ap-
ply a digital elevation model (DEM) and a flood
damage model to estimate the damage from a series
of representative low-probability storm surge events.
This set of extreme surge events is selected from a
large database of synthetic surge events for NYC
that has been generated by Lin et al.(11) Each surge
event shows surge heights for the NYC coastline,
which need to be converted into a map with inunda-

4For more information, see http://msc.fema.gov/.

tion depths by using a DEM for the NYC area. The
set of inundation maps is subsequently used as input
for the flood damage model developed by Aerts and
Botzen.(13) The model output is a series of surge flood
damage estimations, which are used for constructing
the surge EPL curves. The effect of the astronom-
ical tide is approximately accounted for by shifting
the surge EPL curves towards higher probabilities by
a magnitude that has been estimated by Lin et al.(11)

Finally, the obtained flood EPL curves are used to
calculate the EAD for the NYC area.

The remainder of this article is organized as
follows. Section 2 gives background information on
coastal storm surges in the NYC area. Section 3 de-
scribes the method, models, and data used for this
study. Section 4 presents the results. Section 5 com-
pares the results with existing research, and discusses
the uncertainties in the flood risk analysis, which pro-
vides insights for possible users of the EPL and EAD
information. Section 6 concludes.

2. HURRICANES AND FLOOD DAMAGE IN
NEW YORK CITY

Hurricanes are major tropical cyclones or low-
pressure systems whose destructiveness derives
from very high winds (minimum wind speeds of
120 km/hour), flooding due to high storm surges and
waves, and heavy rainfall. The surge flood height is
amplified if the surge coincides with the astronom-
ical high tide; waves breaking on the shoreline can
also add to the flooding. A period characterized by
many severe Atlantic hurricanes (Saffir-Simpson cat-
egories 3–5) in the 1940s to 1960s was followed by
a relatively quiet period during the 1970s up to the
early 1990s, and again by a very active period since
the late 1990s. In addition, Atlantic hurricanes are
affected by climate variations, including the El Niño-
Southern Oscillation (ENSO, a warming of the ocean
surface off the western coast of South America that
occurs every 4–12 years). During the El Niño phase,
tropical vertical shear increases due to stronger
upper-atmosphere westerly winds, inhibiting the de-
velopment and growth of Atlantic hurricanes. There-
fore, Atlantic tropical cyclones are 36% more fre-
quent and 6% more intense during the La Niña phase
of ENSO than during the El Niño phase.(18)

Hurricanes strike the NY region infrequently,
but when they do strike, generally between July
and October, they can produce large storm surges
as well as wind and rain damage. A direct hit of a
hurricane in NYC may cause huge economic
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Fig. 1. Elevation of NYC and the New
Jersey area with the low-lying areas
shown in various shades of brown.

losses,(19) and the Hurricane Evacuation Zones pro-
vided by the NYC Office of Emergency Manage-
ment show that large parts of the city are low lying
and potentially vulnerable to surge flooding (Fig. 1).
Several studies exist that provide rough estimates of
potential flood losses and flood exposure due to hur-
ricanes and winter storms in NYC. Nicholls et al.(5)

used a relatively simple method to estimate the ex-
posure of population and assets to floods in 135 port
cities around the globe, including the NYC-Newark
region. They estimated the current exposure for the
NYC-Newark region from a 100-year flood event to
be at US$320 bn. In addition, nor’easters can have
high wind speed and cause considerable damage,
as demonstrated by, for example, the nor’easter in
December 1992 with damage of over US$1 bn in
NYC, and the consequent flooding of lower Man-
hattan.(19) Furthermore, a report on climate change
and adaptation by NYS(20) estimated the combined
direct and indirect losses from a 100-year flood to be
at US$58 bn, of which US$48 bn can be attributed
to indirect economic losses, which were calculated as
the cost for economic losses as opposed to direct ma-
terial damage. The most recent study by Aerts and
Botzen(13) used a detailed flood damage model to es-
timate direct flood damage in NYC. They showed
that, for a category 1–3 hurricane, the total value of
exposed assets including houses and infrastructure
varies between ∼US$18 bn and 34 bn, and the maxi-
mum potential damage to these assets varies between
∼US$6 bn and 11 bn.

3. METHODS USED TO ESTIMATE
FLOOD RISK

Fig. 2 outlines the method we used to construct
the annual EPL curves and calculate the EAD, which
follows five main steps. First, low-probability surge
events for NYC are selected from the synthetic data
set by Lin et al.(11) (Section 3.1). Second, for each
selected event, the coastal surge heights are interpo-
lated inland, and a DEM is used to create the inun-
dation map (Section 3.2). Third, the inundation maps
are combined with information on the exposed as-
sets to generate a set of flood damage maps using dif-
ferent stage damage functions, which produce high,
medium, and low estimates of damage. Fourth, this
information is used to construct flood EPL curves,
which show the potential damage for different return
periods. Finally, the EAD is obtained by the numer-
ical integration of the EPL curve (Section 3.3).

3.1. Low-Probability Storm Surge Scenarios

Historical data on hurricanes making landfall
in a local area are very limited. Therefore, hurri-
cane risk assessment, which involves the statistical
quantification of hurricane effects at local scales, of-
ten relies on Monte Carlo simulations of synthetic
storms. This study applies a set of low-probability
synthetic hurricane surge events generated by Lin
et al.(11) for NYC with a coupled system composed of
a statistical-deterministic hurricane model and surge
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Fig. 2. Methodology followed to
calculate expected annual damage
(EAD) using the area under the
exceedance probability loss (EPL) curve.

hydrodynamic models. The hurricane model(21) gen-
erates synthetic tropical cyclones under given large-
scale atmospheric and ocean environments for vari-
ous climate conditions; the synthetic storms for the
current climate condition are in statistical agreement
with the (albeit limited) observations.(21) The hydro-
dynamic models used include the Advanced Circu-
lation Model (ADCIRC)(22,23) and the Sea, Lake,
and Overland Surges from Hurricanes (SLOSH)(24)

model; the SLOSH model with a low-resolution nu-
merical grid is used to select (from very large syn-
thetic storm sets) surge events with return periods,
in terms of the surge height at the Battery in lower
Manhattan, NYC, greater than 10 years. The AD-
CIRC model with higher resolution grids is used to
further analyze the selected events and estimate the
surge probabilities. The 1/1,000 (exceedance proba-
bility p = 0.001), 1/500 (p = 0.002), 1/100 (p = 0.01),
and 1/50 (p = 0.02) storms at the Battery (with the
effect of the astronimical tide accounted for) result
in storm-tide heights of 3.48, 3.12, 2.30, and 1.61 m,
respectively.

To carry out this flood risk assessment for
NYC, we select low-probability extreme surge events
from Lin et al.’s(11) ADCIRC-model-simulated surge
events, under the current climate condition estimated
from the National Center for Environmental Pre-
diction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis data.(25) To save compu-
tational resources, one may select a relatively small
set of storms that represent a number of return peri-
ods. For example, Merz and Thieken(26) used seven

return periods to produce EPL curves for flood dam-
age caused by the river Rhine in Germany. Ward
et al.(10) show, however, that selecting a limited num-
ber of return periods to create an EPL curve re-
sults in considerable deviations from the “true” risk.
Therefore, we apply the entire storm set of the tail
of the surge distribution to construct reliable EPL
curves. Considering that most of the sea walls that
protect lower Manhattan are about 1.5 m high,(2)

we select all events from the original 5,000-event
set of Lin et al.(11) that have surge heights greater
than 1.5 m at the Battery. The selected event set
is composed of 214 extreme events (all simulated
with the ADCIRC model) that will be used to esti-
mate, for the current climate conditions, the poten-
tial damage of floods with return periods of 40 years
and longer, with the effect of the astronomical tide
accounted for in accordance with Lin et al.(11) The
data for each event include the surge height at each
simulation grid point along the coast, as shown in
Fig. 3.

3.2. Flood Extent and Inundation Depth

To calculate inundation levels, the simulated
surge heights (Section 3.1) along the coast need to
be interpolated and applied to terrain elevation. A
simple nearest neighbor method is used, which was
successfully applied for calculating flood depths and
damage in the Netherlands.(13) The elevation data
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Fig. 3. Hurricane 1, 2, and 3 evacuation zones, and ADCIRC surge simulation grid points in New York City with its five boroughs.

are extracted from the USGS database5 of the Na-
tional Elevation Data (NED) with a resolution of
∼1/3 arc second (∼10 × 10 m2). For each NED
cell, we determine via a nearest neighbor procedure
which coastline point of the simulated surge height
(Section 3.1) should be used for determining the in-
undation depth. This is done using the grid tool of
the Geospatial Data Abstraction Library.6 Next, by
subtracting the elevation level from the surge level
of a particular cell, an estimate for the flood depth
in each cell is obtained. Negative results, for places
where land elevation exceeded maximum expected
water height, are zeroed to indicate that no flooding
can take place. The analysis process is applied for all
the NED cells for each of the 214 surge event scenar-
ios, resulting in 214 inundation maps. As an example,
an inundation map for NYC in the event of an ex-

5For more information, see: http://www.topodepot.com/10Meter
USGSDem.aspx.

6For more information, see: www.gdal.org.

treme low-probability storm (∼ 1/1,000 event) is de-
picted in Fig. 4. Note that this procedure does not
address existing levees or dunes that protect areas
from inundation or lower water levels during storm
events. This pertains, for example, to the Jamaica
Bay area, where the Rockaways lower water levels
during storm events.(27)

3.3. Flood Risk Modeling

A raster-based flood damage modeling approach
has been applied to estimate the direct economic
damage. For each grid cell (∼10 × 10 m2), the
model combines the information on exposed indi-
vidual buildings with the information on inunda-
tion depth (Section 3.2), using stage-damage func-
tions (SDFs), which describe the relation between
flood depth and potential damage. In this approach,
other physical characteristics of the storm surge are
neglected, such as flow velocity or duration of the
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Fig. 4. Example of an inundation map for NYC for a ∼1/1,000 storm.

inundation, as is common practice in many similar
studies.(8,13,28–31)

3.3.1. Exposure Data and Classification of
Damage Categories

Data on the exposure of the 1.05 million build-
ings and infrastructure objects in NYC (airports,
naval bases, etc.) have been derived from the
MapPLUTO database of the NYC Department of
City Planning.(32) This database contains data by tax
lot and information about the principal buildings on
it. For example, MapPLUTO has information on: the
number of stories; the building class; the estimated
year of construction; the year(s) of renovation; the
building’s assessed value; and the square footage for
all structures on the lot. To classify building types for
the purpose of determining the potential flood dam-
age, we follow the method described by Aerts and
Botzen(13) to assign individual buildings on a tax lot
to a dominant zoning type listed in the MapPLUTO
database. If a lot contains mixed zoning classes, such

as a mix of residential, industrial, and commercial
buildings, then all buildings on a lot are assigned
to the class that most likely uses the ground floor.
Table I lists all 16 reclassed building types and their
reference to the MapPLUTO database.(13)

3.3.2. Flood Damage Estimation

Flood damage is estimated for a given inunda-
tion depth for each of the 16 building types (repre-
sented by different stage damage functions) for each
grid cell. To account for uncertainty in the maxi-
mum damage estimates,(9,34) we use three SDFs (see
Table II) for high, medium, and low estimates of the
maximum damage, based on the multicolored man-
ual (MCM).(33) The three function types represent
a range of possible flood damages that might occur
to properties. The maximum damage values for each
of the SDFs are provided in US$ per m2. Maximum
damage for each of the 16 building types can be calcu-
lated by multiplying the footprint of the building by
the maximum damage values for each SDF. The area
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Table I. The 16 Building Classifications Used in the Flood Damage Model and the Reference to the MapPLUTO Database (3rd Column)
and the Number in the Multicoloured Manual (MCM)(33) (The Last Three Columns Provide High, Medium, and Low Estimates of the

Maximum Damage per Square Meter [in US$/m2])

MaxDam High MaxDam Med MaxDam Low
Name Class #MapPLUTO #MCM [US$/M2] [US$/M2] [US$/M2]

Residential bungalow 1 A en B Bungalow 1,900 1,550 1200
Residential flat 2 C, D, L, N, R, S Flat 2,900 2,300 1800
Warehouses 3 E 410 850 650 450
Industry 4 F 221 1,100 850 600
Garages 5 G 221 1,100 850 600
Hotels 6 H 511 2,600 1,450 2,050
Hospitals 7 I 620 1,400 1,400 1,400
Theatres 8 J 518 3,400 2,750 2,100
Stores 9 K 211 2,500 2,100 1,600
Churches 10 M 630 700 700 700
Offices 11 O, Y, Z 310 2,100 1,650 1,100
Museum 12 P7 630 700 700 700
Library 13 P8 640 3,150 2,650 2,150
Clubs 14 P (others) 234 2,300 1,850 1,300
Recreation 15 Q 523 2,100 1,650 1,100
Education 16 W 610 4,300 3,300 2,100

in square meters of the building footprints has been
derived from the MapPLUTO database. For inunda-
tion levels higher than 3 m, we assume that maximum
damage occurs. In addition, the MCM provides de-
tailed SDFs for various building types and infrastruc-
ture, which have been derived from a large number
of interviews.(35)

3.3.3. Estimation of EPL and EAD

The last step in the calculation is to derive an es-
timate of the flood risk for the extreme events by con-
ducting a statistical analysis of the calculated flood
damage data. The set of the extreme surge events
used for the analysis includes events with an esti-
mated annual frequency of ∼1/50 per year down to
∼1/10,000 per year (with 40-year and longer return
periods when the tidal effect is included), based on
the estimation of the water level at the Battery in
NYC made by Lin et al.(11) To derive the overall risk
from this set of individual storms, an EPL curve is
created using the approach described by Grossi and
Kunreuther.(16) This method relates potential flood
loss to the exceedance probability of that loss (i.e.,
the probability that a certain level of flood damage
will be exceeded). This exceedance probability is de-
rived from the annual frequency (adjusted to account
for the tidal effect) associated with the set of the se-
lected storm events from Lin et al.,(11) which are re-
ordered in order of descending damage estimates, af-

ter which the cumulative probabilities are recalcu-
lated, resulting in exceedance probabilities. The re-
sulting EPL curves are subsequently used to calcu-
late the EAD as the area (integral) under the EPL
curve.

4. RESULTS

Fig. 5 displays the EPL curves for potential flood
damage in NYC based on the three SDFs (low,
medium, high as in Table II). For the most ex-
treme storms (probability <1/5,000), the total dam-
age varies roughly between US$14 bn and 26 bn.
The EPL curves show an abrupt increase in damage
estimates for extreme low-probability storms with
probability <1/3,000 (<0.00033). Apparently, a sig-
nificantly larger area will be inundated under such
extreme conditions that includes relatively expensive
infrastructure, such as JFK airport. The total dam-
age caused by a 1/100 year storm surge, which cor-
responds to the standard for defining flood zones in
the United States, lies within a range of US$ ∼2 bn
and 5 bn. For a 1/500 storm surge, this estimate lies
between US$ ∼ 5 bn and 11 bn.

Flood damage and exceedance probabilities are
also investigated for each of the five boroughs of
NYC. It appears that Brooklyn and Queens are
the most vulnerable and can potentially expect
the largest flood damage (e.g., maximum damage
for Brooklyn is US$ 10.18 bn in Table III). Both
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Table II. Stage Damage Functions (SDFs) Representing the Fraction of the Maximum Flood Damage That Can Occur Due to a Certain
Inundation Depth (m); These Functions Represent High (HIGH SDF), Medium (MEDIUM SDF), and Low (LOW SDF) Estimates of

Flood Damage Based on the MCM(33) (The MCM Reference Number is Listed Along the Row Labeled “#MCM,” and the Building Types
Refer to the Reclassed Buildings Listed in Table I)

#MCM nr.
Building type 410 221 221 511 620 518 211 630 310 630 640 234 523 610 0

HIGH SDF Depth (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.45 0.51 0.49 0.34 0.34 0.40 0.29 0.45 0.52 0.18 0.42 0.18 0.29 0.47 0.42 0.42 0.00
0.50 0.58 0.65 0.58 0.54 0.54 0.50 0.41 0.57 0.62 0.34 0.55 0.34 0.40 0.56 0.57 0.55 0.00
0.75 0.64 0.72 0.68 0.67 0.67 0.62 0.49 0.68 0.72 0.48 0.67 0.48 0.56 0.66 0.68 0.65 0.00
1.00 0.69 0.76 0.75 0.76 0.76 0.75 0.57 0.80 0.83 0.61 0.78 0.61 0.67 0.74 0.77 0.71 0.00
1.25 0.74 0.80 0.79 0.81 0.81 0.79 0.70 0.86 0.86 0.69 0.81 0.69 0.74 0.79 0.81 0.80 0.00
1.50 0.77 0.82 0.83 0.86 0.86 0.83 0.77 0.89 0.88 0.78 0.85 0.78 0.81 0.83 0.85 0.84 0.00
1.75 0.83 0.87 0.86 0.89 0.89 0.87 0.81 0.91 0.91 0.85 0.88 0.85 0.87 0.87 0.88 0.87 0.00
2.00 0.86 0.89 0.90 0.92 0.92 0.90 0.85 0.94 0.93 0.93 0.92 0.93 0.93 0.91 0.92 0.90 0.00
2.25 0.88 0.90 0.93 0.94 0.94 0.93 0.89 0.96 0.95 0.98 0.94 0.98 0.95 0.93 0.94 0.93 0.00
2.50 0.92 0.93 0.96 0.97 0.97 0.97 0.92 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.97 0.96 0.00
2.75 0.99 0.99 0.98 0.99 0.99 0.98 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.00
3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

MEDIUM SDF #MCM nr.
Building type 625 625 410 221 221 511 620 518 211 630 310 630 640 234 523 610 0

Depth (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.43 0.49 0.23 0.19 0.19 0.22 0.29 0.25 0.21 0.18 0.24 0.18 0.17 0.28 0.25 0.23 0.00
0.50 0.53 0.62 0.35 0.38 0.38 0.33 0.41 0.39 0.37 0.34 0.38 0.34 0.29 0.39 0.39 0.37 0.00
0.75 0.58 0.67 0.50 0.53 0.53 0.49 0.49 0.55 0.52 0.48 0.53 0.48 0.47 0.54 0.54 0.51 0.00
1.00 0.62 0.71 0.60 0.63 0.63 0.65 0.57 0.67 0.64 0.61 0.65 0.61 0.59 0.64 0.66 0.61 0.00
1.25 0.67 0.74 0.68 0.71 0.71 0.72 0.70 0.75 0.72 0.69 0.72 0.69 0.69 0.71 0.73 0.70 0.00
1.50 0.71 0.76 0.76 0.78 0.78 0.78 0.77 0.81 0.78 0.78 0.78 0.78 0.78 0.78 0.79 0.76 0.00
1.75 0.77 0.83 0.82 0.83 0.83 0.83 0.81 0.85 0.83 0.85 0.83 0.85 0.85 0.83 0.84 0.81 0.00
2.00 0.82 0.86 0.87 0.87 0.87 0.87 0.85 0.89 0.88 0.93 0.87 0.93 0.92 0.88 0.89 0.86 0.00
2.25 0.85 0.87 0.90 0.90 0.90 0.91 0.89 0.92 0.91 0.98 0.91 0.98 0.94 0.91 0.92 0.90 0.00
2.50 0.90 0.91 0.94 0.94 0.94 0.94 0.92 0.95 0.95 0.98 0.94 0.98 0.96 0.94 0.95 0.94 0.00
2.75 0.98 0.99 0.97 0.97 0.97 0.97 0.96 0.98 0.97 0.99 0.97 0.99 0.98 0.97 0.97 0.97 0.00
3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

LOW SDF #MCM nr.
Building type 625 625 410 221 221 511 620 518 211 630 310 630 640 234 523 610 0

Depth (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.37 0.47 0.00 0.02 0.02 0.06 0.29 0.00 0.00 0.18 0.04 0.18 0.07 0.08 0.11 0.05 0.00
0.50 0.46 0.60 0.03 0.14 0.14 0.10 0.41 0.14 0.04 0.34 0.10 0.34 0.15 0.15 0.18 0.13 0.00
0.75 0.51 0.65 0.24 0.32 0.32 0.31 0.49 0.37 0.20 0.48 0.32 0.48 0.37 0.36 0.34 0.29 0.00
1.00 0.55 0.68 0.39 0.43 0.43 0.50 0.57 0.48 0.29 0.61 0.44 0.61 0.50 0.48 0.45 0.42 0.00
1.25 0.60 0.72 0.53 0.55 0.55 0.62 0.70 0.58 0.45 0.69 0.57 0.69 0.63 0.60 0.59 0.55 0.00
1.50 0.64 0.74 0.68 0.67 0.67 0.73 0.77 0.70 0.56 0.78 0.69 0.78 0.75 0.72 0.73 0.67 0.00
1.75 0.72 0.81 0.76 0.75 0.75 0.80 0.81 0.77 0.65 0.85 0.77 0.85 0.84 0.80 0.81 0.75 0.00
2.00 0.77 0.85 0.83 0.81 0.81 0.86 0.85 0.84 0.75 0.93 0.84 0.93 0.92 0.87 0.87 0.82 0.00
2.25 0.81 0.87 0.88 0.87 0.87 0.90 0.89 0.89 0.86 0.98 0.88 0.98 0.95 0.91 0.91 0.88 0.00
2.50 0.87 0.91 0.93 0.91 0.91 0.94 0.92 0.93 0.90 0.98 0.93 0.98 0.97 0.94 0.94 0.93 0.00
2.75 0.95 0.97 0.96 0.96 0.96 0.97 0.96 0.97 0.95 0.99 0.96 0.99 0.98 0.97 0.97 0.97 0.00
3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

boroughs are estimated to contribute between 38%
and 41% to the total damage for NYC in the case
of either a 1/100- or 1/500-year flood event. Queens
and Brooklyn are followed by Manhattan, Staten

Island, and the Bronx with the damage per bor-
ough, respectively, 11%, 9%, and 1–2% of the total
damage for 1/100 and 1/500 flood events (Table III;
Fig. 6).
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Fig. 5. Exceedance probability loss
(EPL) curves for NYC according to three
different stage damage functions (low,
medium, high; Table II).

Fig. 6. Distribution of flood damage over
the five boroughs for 1/100 and 1/500
flood events (using the medium stage
damage functions from Section 3.3).

With the three EPL curves shown in Fig. 5, the
EAD can be calculated by estimating the area un-
der the curves. The results of these EAD calculations
are presented in Table IV. The total EAD for NYC
lies between US$ 59 and 129 million/year, depend-
ing on the SDFs used (see Section 3.3). If the EAD
is calculated separately for each of the five boroughs,
then Brooklyn shows the highest values (∼US$ 23–
52 million/year), followed by Queens (∼US$21–44
million/year). In terms of the EAD per borough
expressed as a percentage of the total EAD, the
EAD calculations are relatively stable when apply-
ing the different stage damage function. For example,
the EAD for Brooklyn is ∼40% of the total EAD for
the three SDFs.

Fig. 7 shows the potential flood damage in the
five NYC boroughs for both the official FEMA
1/100 and 1/500 flood zones. On the left side of the
1/100 boundary, the damage values of, in particu-
lar, Queens and Brooklyn increase relatively quickly
compared with the other boroughs. This implies that

Fig. 7. Flood damage in US$ bn per borough for different ex-
ceedance probabilities, using high stage-damage functions (SDFs).

quite a few buildings in these boroughs are located
in the potential vulnerable flood zones that may
become the future 1/100 flood zone under climate
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70 Table IV. Expected Annual Damage (EAD) for NYC and for

Each of its Five Boroughs (in US$ million/year and as a
Percentage of the Total EAD); High, Medium, and Low Refer to

the Different Stage-Damage Functions (Section 3.3)

High Med Low

Total EAD [million US$/year] 129.3 92.6 59.7

EAD Borough [million US$/year] High Med Low
Manhattan 18.6 13.1 8.3
The Bronx 1.6 1.0 0.5
Brooklyn 52.5 37.1 23.3
Queens 44.7 32.7 22.0
Staten Island 9.8 7.1 4.6

% of total EAD High Med Low
Manhattan 14.4 14.2 14.0
The Bronx 1.2 1.1 0.8
Brooklyn 40.6 40.0 39.1
Queens 34.6 35.3 36.8
Staten Island 7.6 7.7 7.8

change since this is approximately the current 1/500
flood zone.(11) Flood-risk management policies could
be first prioritized to these areas.

5. DISCUSSION

Estimates from existing research on potential
flood damage in NYC vary considerably. Possible
reasons for these differences will be discussed in
this section. Since storm surge height simulations for
NYC and their probability have been extensively dis-
cussed by Lin et al.,(11,12) we focus here on differences
in flood damage calculations.

Studies by Nicholls et al.(5) show the poten-
tial flood exposure to flooding is US$320 bn, while
Leblanc and Linkin(19) and NYS(20) provide flood
damage estimates for a category 3 hurricane event
in the NYC area of, respectively, US$200 bn and
US$58 bn. These estimates are much higher than
the damage of a comparable extreme event in our
simulations, which result in a maximum amount of
flood damage of ∼US$21 bn for an extreme hurri-
cane with a return period of ∼1/5,000 (see Table III;
Section 4.2). The EAD for a 1/100 flood by Aerts and
Botzen(13) was estimated at ∼US$18 million/year,
which is lower than our lowest estimate.

The most recent and detailed information on di-
rect flood damage to buildings in NYC is described
by Aerts and Botzen.(13) They estimate flood damage
for different FEMA flood zones (1/100 and 1/500), as
well as for four Hurricane Evacuation Zones. Aerts
and Botzen(13) calculate flood damage using the total
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replacement value of the ground floor and its con-
tents. The total ground floor value in the flood zones
is estimated at between US$6.26 bn and US$7.44
bn for buildings in, respectively, the 1/100 and 1/500
flood zones. Our range of flood damage that can
be caused by a 1/100 storm is estimated somewhat
lower at between US$2.06 bn and 4.69 bn. For a
1/500 storm, the estimate by Aerts and Botzen(13)

of US$7.4 bn is well within our range of US$5.65
bn–11.55 bn. Our range of estimates of the maxi-
mum damage for an extreme low-probability hurri-
cane (US$ ∼14–26 bn; Fig. 5) is close to the most
recent estimates by Aerts and Botzen(13) for a cate-
gory 4 hurricane event (US$13.15 bn). Although the
flood extents applied are different, the fact that the
EAD (probability × damage) of this study is higher
than the EAD by Aerts and Botzen(13) can be largely
explained by the larger numbers of events that we in-
cluded in our EAD calculation (the full integral un-
derneath the EPL curve) compared with only assess-
ing the damage that belongs to either a 1/100 or a
1/500 event. In that respect, the EAD estimates in
our study are more comprehensive than those in ear-
lier research.

Flood damage methods used in the various stud-
ies for NYC differ in the following three main
methodological approaches: (1) they use different se-
lections of inundation scenarios, such as differences
in flood extents; (2) they apply distinct catastrophe
models, which implies that damage curves and data
on exposed assets differ; and (3) studies estimate
different damage categories, for example, economic
(or “indirect”) flood damage is not—or partly—
included.(9,13,34) In the next section our results are
discussed within the context of these methodologi-
cal issues, and some additional considerations will be
provided.

5.1. Uncertainty About Flood Extent Mapping

5.1.1. Differences with Existing Flood-Extent
Mapping

When comparing our results and methods with
Nicholls et al.,(5) it appears that the latter study ad-
dresses exposure to floods and covers the 1/100 flood
zones for the whole NYC-Newark region and, hence,
results in a much larger potential flood zone area
compared with our study. That the whole NYC-
Newark region will be flooded at the same time
is an unrealistic scenario, which explains the larger
numbers estimated by Nicholls et al.(5) Furthermore,

Fig. 8. Percentage of damage in flood zones.
Notes: The curve “% outside” shows the percentage of flood dam-
age simulated in this study that is suffered outside the combined
1/100 and 1/500 FEMA flood zones. The curves “% in 1/100,”
“% in 1/500,” and “% in Hur 1” show the percentages of simu-
lated flood damage of our study that are suffered within, respec-
tively, the FEMA 1/100 flood zone, 1/500 flood zone, and Hurri-
cane Evacuation Zone 1.

differences in flood damage estimates between this
study and the study by Aerts and Botzen(13) can also
be partially explained by differences in flood extent
mapping. For example, the extent of our interpolated
1/100 and 1/500 inundation maps differ from the stan-
dard FEMA 1/100, 1/500 flood zones that were used
by Aerts and Botzen.(13) As Fig. 8 illustrates, the per-
centage of flood damage in our study is simulated
outside (“% outside,” Fig. 8) and inside (“% in,”
Fig. 8) the FEMA flood zones. For relatively high
probability events (1/50, p = 0.02), approximately
14% of the flood damage is located outside the com-
bined FEMA 1/100- and 1/500-flood zones. For lower
probability events (<1/200, p < 0.005), this percent-
age is considerably higher at 23–40%.

The existing FEMA 1/100 flood zone is an es-
timate of a 1/100 flood either based on a historical
storm event or an average calculated on the basis of
several hypothetical storm events that may be unre-
alistic and cannot cover the spectra of the character-
istics of possible storms. This is the reason why our
results show that much potential damage is caused
outside the FEMA 1/100 flood zones. Although our
model estimates are associated with uncertainties,
the results indicate that properties that currently lie
outside of the FEMA 1/100 flood zone can still be at
risk from a 1/100 storm surge event.

Also, Hurricane Sandy (2012) included a surge
of about 2.75 m (above the mean high water) at
the Battery, approximately the 500-year surge level
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Fig. 9. Inundation map for an extreme low probability scenario (<1/1,000, p < 0.001) for the Jamaica Bay area in Queens.
Notes: In the circle, an abrupt transition can be observed between high (the left part of the circle) and lower inundation levels (the right
part of the circle), which is caused by a lack of nearby surge-height points used for interpolation.

estimated by Lin et al.(11) However, the surge heights
and their related probabilities in Lin et al.(11) re-
sult from simulations of hurricane-driven windfields.
Hurricane Sandy was undergoing significant extrat-
ropical transition before and during landfall and is an
example of a so-called hybrid storm, a combination
of a hurricane and a winter storm. Hurricanes and
winter storms are driven by different energy sources.
Where a hurricane is powered by the evaporation of
ocean water, winter storms are powered by horizon-
tal temperature contrasts in the atmosphere. Hence,
a hybrid storm like Sandy is able to tap into both en-
ergy sources, which is why the storm was so power-
ful. Research on extratropical transition and hybrid
storms is currently limited(36) and some new theory
and analysis methods are being developed.(37) Future
surge risk assessment that account for the surges in-
duced by hybrid storms may result in larger flood
zones and higher surge return levels (or shorter surge
return periods); the Hurricane Sandy induced surge
may have a shorter (than 500 years) return period.

5.1.2. Interpolation Techniques

In general, flood extent mapping is associated
with uncertainties. Uncertainty in flood extent map-

ping, described in Section 3.2, can be further illus-
trated by means of a visual inspection of the inunda-
tion maps. For example, Fig. 9 shows that, for some
areas in the Jamaica Bay area in Queens, the inter-
polation method for creating inundation depths has
resulted in abrupt transitions in flood depth. This can
be explained by the lack of coastline surge-height
points in the Jamaica Bay area that are used for
the interpolation process. Surge heights for the in-
ner Jamaica Bay area were taken from the coast-
line of the Rockaways (the coastal zone in the lower
part of Fig. 9), which lies at some distance from
Jamaica Bay. This may lead to an overestimation
of surge heights in the Jamaica Bay area. However,
Sanders,(38) who compares national elevation data
(NED) for the United States with more detailed ele-
vation data, such as LiDAR, argues that NED may
cause a systematic underestimation of flood risks,
which may compensate for the overestimation of
surge heights in some areas, such as Jamaica Bay.

5.1.3. Flood Extent and Storm Characteristics

The variation in flood damage simulations is fur-
ther illustrated in Fig. 10. This figure shows the to-
tal flood damage for all 214 simulated coastal floods
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Fig. 10. Total simulated flood damage for NYC (in US$ bn) for
all 214 simulated coastal floods and their probabilities using the
medium damage curves of Table III, and the exceedance proba-
bilities of the 214 storm surges.
Note: The circle shows the range of possible damages of storms
with a probability of about 1/80.

(using the medium damage curves of Table II), ver-
sus the probabilities of the storm-surge heights (in-
stead of the exceedance probabilities of the flood
damage as in Fig. 5). Fig. 10 shows that the flood
damage estimate for the area (NYC) is not a mono-
tonic function of the surge height probability at a spe-
cific location (the Battery). Variations in the flood
damage estimates are particularly large between the
1/80 (p = 0.012) and the 1/1,000 (p = 0.001) re-
turn period storms. The figure shows that a relatively
high-probability storm of 1/80 may cause consider-
able damage comparable to a 1/1,000 storm, and that
all the damage of storms around 1/80 range are be-
tween US$2 bn and 9 bn (see the circle in Fig. 10).
Apparently, it is not only the probability of a storm
and its related surge height at one location that de-
termine flood damage over an area, but the flood ex-
tent related to all storm characteristics (i.e., intensity,
size, track, and forward velocity) that affect the entire
area. In this context, Lin et al.(11) state: “the storm
that generates the highest surge level (4.75m) at the
Battery (lower Manhattan) moves northeastward,
and close to the city center.” However, a relatively
weaker storm that is located at greater distance from
lower Manhattan produces a comparable surge (4.57
m) at the Battery, because a larger wind-field size,
in combination with a northwestward translation,
pushes water more directly into the NYC harbor.(11)

Also, although the surge is highly correlated
throughout the area of study, the events may be
in different order in terms of the surge height at
different places in the area. For example, storms
with an identical return period at a location can
have different flood extent and flood damage asso-

ciated with these flood scenarios. Fig. 11 exempli-
fies the variation in flood damage calculations by
showing a sample of two storm-surge scenarios (1/90
and 1/80), numbered #154 and #169, respectively. Al-
though simulations #154 and #169 have almost the
same probability (at the Battery), they have a com-
pletely different spatial flood extent: namely, the
flood extent of #169 is much larger despite the some-
what higher probability. The flood damage for sim-
ulation #169 of US$4.2bn is also much higher than
the simulated flood extent of #154, with US$ 1.6 bn
of damage. Therefore, our method of applying the
entire storm set of the tail of the surge distribution
(and conduct direct statistical analysis on the dam-
age estimates) prevents potential errors included by
selecting small number of storms only at several re-
turn periods.

Reliable flood extent and damage calculations
are important; about 33,122 buildings are located in
the official FEMA 1/100 flood zone, and 66,249 build-
ings are located in the FEMA 1/500 flood zone,(13)

including 252 critical facilities, such as hospitals, fire
departments, and police stations. A more detailed
analysis of differences in flood zoning extent is pro-
vided in Fig. 12. This figure shows the current FEMA
1/100 flood zone for a part of the Upper East Side
in Manhattan. It also shows (in blue) the extent of
simulation run #169, which has a higher probabil-
ity of 1/80. It can be clearly seen that some build-
ings are within the flood extent map of run #169, but
not within the FEMA 1/100 flood zone, and hence,
zoning policies and building codes do not apply for
these buildings.(13) Of course, these maps must be
evaluated with care, owing to uncertainties in dif-
ferent parts of our method and data, such as the
applied interpolation method, the vertical and hor-
izontal accuracy of the NED, and uncertainty in
the storm-surge simulations. Nevertheless, this exam-
ple stresses the need for a probabilistic approach of
storm-surge analyses as the basis for defining FEMA
flood zoning mapping.

5.2. Catastrophe Modeling

The studies by Linkin and Leblanc(19) and
NYS(20) assess flood damage for a broader range of
vulnerable assets than in our study, such as rail in-
frastructure and other vital infrastructure. This may
explain the relatively high flood damage estimates
found by these studies. An important asset that is not
considered in our study is the potential damage to the
NYC subway system. Currently, the Metropolitan
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Fig. 11. Two flood extent and inundation maps with almost identical probabilities (#154: p ∼ 1/90 and #169: p ∼ 1/80).
Note: The flood extent of #169 is much larger, despite the higher probability.

Fig. 12. The current FEMA 1/100 flood zone for a part of Man-
hattan and, shown in blue, the extent of simulation run #169 with
a probability of 1/80.

Transportation Authority (MTA) has about 44,000 ft
(>13 km) of underwater subway tunnels that need to
be protected from flooding.(39) Several studies stress
the high potential flood damage to the NYC sub-
way rail and subway systems in the case of an ex-
treme flood event.(20) Historic flood events showed
that NYC rail systems are indeed very vulnerable.
For example, the PATH rail system between NYC
and New Jersey was flooded during a coastal flood
in the winter of 1992,(40) which caused considerable
damage of US$ 0.72 bn.(19)

The differences in damage curves used by Aerts
and Botzen(13) may explain their higher estimation
of flood damage compared with this study. Aerts
and Botzen(13) use the total replacement value of the
ground floor, even if potential water levels during
a flood are low. This study uses SDFs, which calcu-
late flood damage based on a fraction of the max-
imum damage for lower water levels. For example,

only ∼37–47% of the maximum damage is inflicted
on low-density residential buildings for water levels
of 0.25 m (see land-use categories #1 and # 2 in Table
II, low SDF). Another important difference is that
the replacement value of the ground floor used by
Aerts and Botzen(13) is on average higher than the
maximum damage that has been estimated with the
three SDFs from the MCM that have been used in
our study.(33)

The use of other SDFs can influence the results.
For example, if we examine the Economic Guid-
ance Memorandum (EGM) provided by the U.S.
Army Corps of Engineers (USACE, 2003), we see
the maximum inundation depth considered is about
16–17 ft (∼4.9–5.2 m), which is higher than the max-
imum 3 m in the MCM curves. This means, that if
the EGM would be used, additional damage occurs
above 3 m inundation depth. Jongman et al.(41) com-
pare seven different models using SDFs, including
the MCM-based SDFs(33) and the US-FEMA based
HAZUS SDFs.(42,43) It appears that the MCM and
HAZUS use similar shapes for the curves and pro-
duce potential damages of the same magnitude. In
addition, the SDFs used in this study are based on
potential damage from fresh water, while salt wa-
ter may cause larger damage as compared to river
floods. This difference is the largest for agriculture
and vehicles,(44) but also damage to building fab-
ric may increase slightly if buildings are flooded
by salt water.(33) Other issues that may influence
the flood damage calculation, but that are not ad-
dressed in this method, are flood velocity and wave
impacts.

5.3. Economic Damage

It is important to note that our study focuses
on damages to assets that can be relatively easily
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evaluated in monetary terms (e.g., damage to build-
ings and parts of infrastructure). Intangible dam-
age, such as the social and environmental impacts of
floods,(45) also has important impacts,(46) as well as
loss of human lives.(47) In general, this omission of
intangible damage causes an underestimation of our
flood damage estimates for NYC. Thus, another ex-
planation for the difference between flood damage
simulated in our study and that in existing studies
is the inclusion of economic damage in other stud-
ies.(19,20) This study focuses on simulating direct flood
damage, such as damage to buildings and economic
assets.(45,49) Examples of indirect damage include dis-
ruption of traffic, trade, and public services.(50) Since
these consequences are not considered in this study,
the flood damage estimates presented here are most
likely an underestimation of the total flood damage
in NYC. As an illustration, Aerts and Botzen(13) es-
timate that the sum of direct and indirect economic
losses to the subway and rail system operators caused
by a 1/100 year flood varies between US$0.23 bn
and US$1.49 bn. Note that these numbers only ad-
dress ticket sale losses. However, the total of indi-
rect flood damage is damage caused by disruption of
the whole NYC economy, and the additional costs of
emergency and other actions taken to prevent flood
damage and other losses.(50) Hallegatte(51) estimates
the damage caused by Hurricane Katrina to New Or-
leans and shows that the direct losses of Hurricane
Katrina are estimated at US$107 bn, whereas indi-
rect damage is estimated at an additional US$42 bn,
hence, 28% of the total damage. These results indi-
cate that indirect flood losses are an important cate-
gory of damage.

6. CONCLUSIONS AND
RECOMMENDATIONS
FOR FURTHER RESEARCH

The main objective of this article was to develop
a new methodology for assessing the full distribu-
tion of flood risk for NYC, including low-probability
events. This distribution can be represented by EPL
curves and the flood-risk indicator of the EAD,
which is obtained by the integral of these curves.
More than 200 low-probability storm-surge events
for NYC were selected from the synthetic data set by
Lin et al.,(11) which was developed using a coupled
statistical-deterministic hurricane model and surge
hydrodynamic models. For those events, we applied
the coastal surge heights to create flood inundation
maps, which have been combined with information
on the exposed assets to generate flood damage maps

and the EPL curves. Our 1/100 (∼US$ 2–5 bn), 1/500
(∼US$ 5–11 bn) and, extreme low-probability dam-
age (∼US$14–26 bn) estimates of flood damage are
all close to the most recent estimates by Aerts and
Botzen.(13) Our maximum EAD estimate of US$126
million/year can significantly increase when we in-
clude economic damage or other assets at stake (e.g.,
transport infrastructure) in our analyses. The ap-
proach followed in our study results in a more accu-
rate estimation of direct flood risk in NYC than ear-
lier studies because it considers many realistic flood
events, and our flood damage estimates are based on
more detailed spatial information on flood inunda-
tions and exposure of assets. Moreover, this study ex-
amined several uncertainties in the various steps of
the risk analysis, which resulted in variations in flood
damage simulations. These uncertainties include the
interpolation of flood depths and the use of different
flood damage curves. Our method, however, is rel-
atively simple with several assumptions, and future
flood risk analysis studies could further address these
sources of uncertainty in other contexts.

Apart from applying more accurate techniques
and data to reduce uncertainties, there are additional
issues that deserve attention in future research. First,
future trends, such as climate change and population
growth, may further change EAD estimations in fu-
ture 1/100 zones. Lin et al.(11) show that future climate
effects may cause the present NYC 100-year surge
flooding to occur every 3–20 years, and the present
500-year flooding to occur every 25–240 years, by the
end of the century. In addition to climate change, so-
cioeconomic developments, such as population and
economic growth in hazard-prone areas, are likely
to have a major impact on future flood risks. An
upward trend in worldwide natural disaster losses
can be observed. This has been mainly caused by
socioeconomic developments, such as increased ur-
banization in coastal zones, which are likely to con-
tinue in the future.(52) NYC has been no exception
to this global trend and has experienced consider-
able increases in concentrations of population and
economic activities over time, which has heightened
flood risk.(53) According to the NYC Department of
City Planning, New York City’s population is pro-
jected to continue to grow from over 8 million in 2000
to 9.1 million in 2030, which is an increase of 1.1 mil-
lion or 13.9%. Finally, future research may examine
land-use change(54,55) or optimal spatial patterns(56)

of insured losses across the different boroughs and
compare, as means of validation, how those spatial
patterns match the simulated patterns of our damage
simulations.
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Second, our flood damage estimates provide a ra-
tionale for updating flood insurance and zoning poli-
cies(57) based on a probabilistic risk assessment ap-
proach. The U.S. National Flood Insurance Program
(NFIP) currently insures a value of about US$8 bn
in NYC and is an important program for achieving
risk reduction.(58) The NFIP requires that new struc-
tures should be elevated to the expected water level
of the 100-year flood. Based on Lin et al.,(11) at least
parts of the 500-year zone may change into the 100-
year flood zone in the future. However, the NFIP
does not address climate change, and its regulations
are restricted to the current 100-year flood zone.(59)

For buildings in the 500-year zone, minimum eleva-
tion requirements do not apply. Insurance and the
city’s building code regulations could be applied to
what is expected to be the future 1/100 flood-zone,
and a building code policy could be designed that re-
quires “freeboard” (elevating the ground floor above
the 1/100 flood level) of up to ∼0.6 or ∼0.9 m (2 or 3
ft) for new structures in the 1/100 flood zone.(57,59)

It has been demonstrated that investing in (addi-
tional) freeboard can be cost effective in terms of
the reduced risk it delivers.(60) Moreover, zoning con-
trols could be applied to limit potential flood dam-
age, such as building restrictions or increasing the
required “open space ratio,” which implies a lower
building footprint and, hence, lower potential flood
damage.(61,62) Finally, hybrid storm Sandy showed
more research is needed to assess the physical pro-
cesses related to those storms and whether the fre-
quency and magnitude of those storms will increase.
Future surge risk analysis and loss estimation need to
account for the effect of extratropical transition and
hybrid storms.
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