
Reading

Faber, pp. 105–111 and 119–162

Problems are due Tuesday, 4/2/96, before 4:00 PM, in 4–334

Problems

1. An airplane flying at constant altitude at speed u through an Euler fluid of density

ρ, in a gravitational field of magnitude g, has a total wing area A (both wings). The

lower wing surfaces are flat, so that the speed of the fluid with respect to the plane

just beneath the lower wing surfaces is u, and the upper surfaces are shaped in such

a way that the mean speed of the fluid just above the upper surfaces is v > u. As a

result, the fluid exerts an upward force (“lift”) on the wings. Both u and v are much

smaller than the speed of sound in the fluid. For simplicity, make the approximations

that A is the same for both the upper and lower wing surfaces and that v = constant

along the upper surfaces, and neglect any contributions to the lift on the airplane

resulting from other parts of the plane.

a. Using the appropriate form of Bernoulli’s theorem, determine the mass of the

airplane.

b. Determine the magnitude and direction of the rate, d
→
p /dt, that momentum is

transmitted to the fluid by the airplane.

c. The airplane now climbs at the same net speed, u, but with an upward component

uz. Assume, for simplicity, that the speed of the fluid with respect to the plane

just beneath the lower wing surfaces is still u. Determine the mean speed, v′,

that the fluid must now have with respect to the upper wing surfaces.

[NOTE: This standard “textbook” problem is something of a fraud, since an Euler

fluid has no way of exerting a force on the wings. The fluid would resolve the

apparent paradox by shifting the point at which the flow separates around a wing

so that the distance traveled by a fluid parcel around the wing, and hence the

mean fluid speed, would be equal for the upper and lower wing surfaces. A real

fluid, such as air, always has some viscosity, and the presence of viscosity allows

for the formation of a boundary layer within which the fluid speed with respect to

the wing surface approaches zero as the distance to the surface approaches zero.
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It is the existence of this boundary layer that allows the fluid to exert a force

on the wings. We will study viscosity and boundary layers later in the course.

Nevertheless, for a fluid (such as air) with sufficiently low viscosity, the thickness

of the boundary layer will be very small compared to the other dimensions of the

system (in the present case, the size of the wings); outside the boundary layer,

the gradients in fluid velocity are sufficiently small that the effects of viscosity

can be neglected. Hence, Bernoulli’s theorem can be applied to the fluid flow

outside the boundary layer, and the answers you derived above are correct.]

2. In class, we found that a necessary and sufficient condition for the equilibrium of a

self-gravitating fluid sphere is that the variation, δE, in the total energy

E = U + Ω =

M∫
m=0

(
u+

Gm

r

)
dm (A)

vanish for an arbitrary adiabatic variation, δr, in the distance r from the center of the

sphere of each incremental mass shell, dm = 4πρr2dr, between r and r + dr. (Here U is

the total internal energy of the fluid sphere, Ω is its total gravitational potential energy,

and u is local internal energy perunit mass of the fluid.) It must then be true that a

necessary (but not sufficient) condition for equilibrium is that E be an extremum with

respect to any specified functional form for δr. In this problem you will examine the case

of a homologous adiabatic variation, δr = αr, α = constant � 1.

a. Determine the density, ρ(α), as a function of α and the unperturbed density

ρ0 = ρ(α = 1).

b. Calculate

δE =

(
∂E

∂α

)
s; α=1

dα .

Express the first term in your integrand in terms of

(
∂u

∂ρ

)
s

and

(
∂ρ

∂α

)
α=1

.
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Then use the First Law of Thermodynamics and your result from part (a) to

rewrite this term as a function of ρ0 and the unperturbed pressure, P .

c. After evaluating the second term in the integrand, set δE = 0. Use the necessary

condition for dynamical equilibrium that you have now derived to obtain an

expression for Ω in terms of

V∫
0

PdV ,

where V is the total volume of the fluid sphere and dV is the incremental volume

of a spherical shell between r and r+dr. Briefly discuss the relationship between

your result and the virial theorem of classical mechanics.

d. One can show that for a perfect nonrelativistic gas (e.g., an ideal gas),

P =
2

3
ρu .

Use this result, together with equation (A) and your result from part (c), to

obtain an expression for E in terms of Ω alone and an expression for E in terms

of U alone. Show that if the total energy of a self-gravitating sphere composed

of a perfect nonrelativistic gas is increased slightly, the total internal energy of

the sphere decreases. Your result implies that if the internal energy is mostly or

entirely thermal in nature (as in an ideal gas), the mean temperature of the sphere

decreases if its total energy increases! In effect, the fluid sphere has a negative

specific heat. This non-intuitive result, which applies to many stars (including the

sun) wherein the ideal gas law is a good approximation, is the reason why such

stars are stable to thermal perturbations. If the thermonuclear energy generation

rate in the solar interior increases incrementally, raising the total energy of the

sun, the internal temperatures drop; this, in turn, lowers the energy generation

rate back toward its equilibrium value.

e. Similarly, one can show that for a perfect relativistic gas,

P =
1

3
ρu .

3



Use this result to obtain an explicit expression for E, and show that in this

case the extremum in E is such that the self-gravitating sphere is in neutral

equilibrium with respect to homologous perturbations. This result is intimately

related to the existence of a limiting mass (the Chandrasekhar limit, Mch ' 1.4

solar masses) for white dwarfs. As the central density, ρc, and mass, M , of a

white dwarf increases, the degenerate electron gas (another type of perfect gas),

which provides most of the pressure, becomes increasingly relativistic. In the

limit as ρc → ∞, the electron gas becomes completely relativistic, a state of

neutral dynamical equilibrium is approached, and M approaches Mch as a limit

(in the absence of other complicating effects, as described in lecture).

3. Tornadoes are intense atmospheric vortices, often made visible by very small water

droplets that condense as air swirls into the vortex. The object of this exercise is to

make certain deductions about the distribution and speed of tornadic winds from ob-

servations of the geometry of the condensation funnel. A key feature of the atmosphere

in the region between the ground and the base of the cloud from which the tornado

issues is that it has an adiabatic temperature profile, which means that 1.) All air at

the same pressure has the same temperature, and 2.) All air at any pressure, when

moved adiabatically to a fixed reference pressure, has the same temperature. Another

feature of this part of the atmosphere is that the mass fraction of water vapor (the

specific humidity, q) is nearly constant.

a. The saturation specific humidity, q∗, is a function of temperature and pressure

only. When its value becomes as small as q, water vapor condenses. The quantity

q is nearly constant following samples of air as they move along. Show that under

these circumstances, the outer boundary of the condensation funnel is a surface

of constant pressure.

b. Consider a point at the surface of the earth some distance from the tornado, in

a reference frame moving with the vortex. In this reference frame the tornado

may be approximated as a steady system ( ∂∂t = 0). Assume that the wind speed

is very small at this point and that the atmosphere is hydrostatic between this

point and the base of the thunderstorm cloud. Also assume that air at this point

swirls into the vortex along the ground which, being Kansas, can be considered

a level surface which exerts no frictional drag on the flow. This flow of air is

adiabatic as well. Find an expression for the magnitude of the air velocity at the

point that the outer boundary of the condensation funnel contacts the ground,

as a function of the altitude of the cloud base above the ground far from the

tornado. The acceleration of gravity may be assumed constant.
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c. To a very good approximation, the component, V , of air flow that travels around

the vortex center is in a state of centripetal balance with the radial pressure

gradient:
1

ρ

∂P

∂r
=
V 2

r
.

Assume that V varies inversely with radius and does not vary with altitude, and

that the flow near the tornado is hydrostatic. Derive an expression for the shape

of the outer edge of the condensation funnel.
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